Economy, asked by nikhilpore0000, 5 days ago

explain the different types of internet connections.​

Answers

Answered by gouravgupta65
2

  \blue{\mathtt {Solution}}− \\ </p><p></p><p>Given  \:  inequality \:  is \:  \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} - \: 3x \: + \: 4}{x \: + \: 1} &gt; 1 \\ </p><p></p><p>can  \: be \:  rewritten \:  as \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} - \: 3x \: + \: 4}{x \: + \: 1} - 1 &gt; 0 \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} - \: 3x \: + \: 4 - \: (x + 1)}{x \: + \: 1} &gt; 0 \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} - \: 3x \: + \: 4 - \: x \: - \: 1}{x \: + \: 1} &gt; 0 \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} - \: 4x \: + \: 3 }{x \: + \: 1} &gt; 0 \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ {x}^{2} - \: 3x - x \: + \: 3 }{x \: + \: 1} &gt; 0 \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ x(x - 3) - 1(x - 3)}{x \: + \: 1} &gt; 0 \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{ (x - 3) (x - 1)}{x \: + \: 1} &gt; 0 \\ </p><p></p><p>So, \:  breaking  \: points  \: are \:  - 1, 1 \:  and \:  3. \\ </p><p></p><p>So, \:  intervals \:  along  \: with  \: \\  their \:  respective \:  signs \:  of \:  inequality \:  are \:  as  \\  \: follow :- \\ </p><p></p><p>\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf Interval &amp; \bf Sign \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf ( - \infty , - 1) &amp; \sf - \\ \\ \sf ( - 1,1) &amp; \sf + \\ \\ \sf (1,3) &amp; \sf - \\ \\ \sf (3, \infty ) &amp; \sf + \end{array}} \\ \end{gathered}\end{gathered} \\ </p><p></p><p>So, \:  Solution \:  set \:  is \\ </p><p></p><p>  \mathcal{\bf\implies \:\boxed   { \bf \red{x \in \: ( - 1, \: 1) \: \cup \: (3, \: \infty ) \: }}}</p><p></p><p></p><p>

Answered by anshkumar6777
0

Answer:

hhjxjndndnnfnfjfkflffjbfbfnfkfkflfj

Similar questions