explain the effects of eddy currents in the case of copper plate with slots and without slots oscillating between the plates of powerful magnet
Answers
Explanation:
Eddy Currents and Magnetic Damping
As discussed in Motional Emf, motional emf is induced when a conductor moves in a magnetic field or when a magnetic field moves relative to a conductor. If motional emf can cause a current loop in the conductor, we refer to that current as an eddy current. Eddy currents can produce significant drag, called magnetic damping, on the motion involved. Consider the apparatus shown in Figure 1, which swings a pendulum bob between the poles of a strong magnet. (This is another favorite physics lab activity.) If the bob is metal, there is significant drag on the bob as it enters and leaves the field, quickly damping the motion. If, however, the bob is a slotted metal plate, as shown in Figure 1(b), there is a much smaller effect due to the magnet. There is no discernible effect on a bob made of an insulator. Why is there drag in both directions, and are there any uses for magnetic drag?
The figure describes an experiment on exploring the effect of eddy currents. Part a of the figure shows a metal pendulum plate swinging between the pole pieces of a magnet. The pendulum is attached at one end to a pivot. Eddy currents are shown as small swirls on the surface of the plate. The oscillation is shown as damped by smaller displacement of the plate marked as S. Part b of the figure shows a slotted metal pendulum plate swinging between the pole pieces of a magnet. The pendulum is attached at one end to a pivot. Eddy currents are less effective. The oscillation is shown with a larger displacement of the plate marked as S, than the displacement in part a. Part c of the figure shows a non conducting pendulum plate swinging between the pole pieces of a magnet. The pendulum is attached at one end to a pivot. Extremely small currents are induced. The oscillation is shown with a larger displacement of the plate marked as S, than the displacement in part a.
Figure 1. A common physics demonstration device for exploring eddy currents and magnetic damping. (a) The motion of a metal pendulum bob swinging between the poles of a magnet is quickly damped by the action of eddy currents. (b) There is little effect on the motion of a slotted metal bob, implying that eddy currents are made less effective. (c) There is also no magnetic damping on a nonconducting bob, since the eddy currents are extremely small.
I hope it's help you
please follow me
please Mark brainlist