explain the mid point theorem
Answers
Answer:
What is the proof of midpoint theorem?
Start your journey with a free gift card.
Mid-Point Theorem :-
The line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to half the third side.
Given: In triangle ABC, P and Q are mid-points of AB and AC respectively.
To Prove: i) PQ || BC ii) PQ = 1/ 2 BC
Construction: Draw CR || BA to meet PQ produced at R.
Proof:
∠QAP = ∠QCR. (Pair of alternate angles) ---------- (1)
AQ = QC. (∵ Q is the mid-point of side AC) ---------- (2)
∠AQP = ∠CQR (Vertically opposite angles) ---------- (3)
Thus, ΔAPQ ≅ ΔCRQ (ASA Congruence rule)
PQ = QR. (by CPCT). or PQ = 1/ 2 PR ---------- (4)
⇒ AP = CR (by CPCT) ........(5)
But, AP = BP. (∵ P is the mid-point of the side AB)
⇒ BP = CR
Also. BP || CR. (by construction)
In quadrilateral BCRP, BP = CR and BP || CR
Therefore, quadrilateral BCRP is a parallelogram.
BC || PR or, BC || PQ
Also, PR = BC (∵ BCRP is a parallelogram)
⇒ 1 /2 PR = 1/ 2 BC
⇒ PQ = 1/ 2 BC. [from (4)]
what is mid point theorem
The Midpoint Theorem is used to find specific information regarding lengths of sides of triangles. The Midpoint Theorem states that the segment joining two sides of a triangle at the midpoints of those sides is parallel to the third side and is half the length of the third side.
#Hopeithelps...
Mark as brainliest.. :)