explain the need and importance of Preamble in preparing map
Answers
Answer:
Prove that the general solution of sin θ = sin ∝ is given by θ = nπ + (-1)[Math Processing Error] ∝, n ∈ Z.
Solution:
We have,
sin θ = sin ∝
⇒ sin θ - sin ∝ = 0
⇒ 2 cos [Math Processing Error] sin [Math Processing Error] = 0
Therefore either cos [Math Processing Error] = 0 or, sin [Math Processing Error] = 0
Now, from cos [Math Processing Error] = 0 we get, [Math Processing Error] = (2m + 1)[Math Processing Error], m ∈ Z
⇒ θ = (2m + 1)π - ∝, m ∈ Z i.e., (any odd multiple of π) - ∝ ……………….(i)
And from sin [Math Processing Error] = 0 we get,
[Math Processing Error] = mπ, m ∈ Z
⇒ θ = 2mπ + ∝, m ∈ Z i.e., (any even multiple of π) + ∝ …………………….(ii)
Now combining the solutions (i) and (ii) we get,
θ = nπ + (-1)[Math Processing Error] ∝, where n ∈ Z.
Hence, the general solution of sin θ = sin ∝ is θ = nπ + (-1)[Math Processing Error] ∝, where n ∈ Z.
Note: The equation csc θ = csc ∝ is equivalent to sin θ = sin ∝ (since, csc θ = [Math Processing Error] and csc ∝ = [Math Processing Error]). Thus, csc θ = csc ∝ and sin θ = sin ∝ have the same general solution.
Hence, the general solution of csc θ = csc ∝ is θ = nπ + (-1)[Math Processing Error] ∝, where n ∈ Z.