Explain the one-dimensional Harmonic oscillator on the basic of thermodynamics statistics.
Answers
Answer:
Harmonic oscillators
Our proof of the equipartition theorem depends crucially on the classical approximation. To see how quantum effects modify this result, let us examine a particularly simple system which we know how to analyze using both classical and quantum physics: i.e., a simple harmonic oscillator. Consider a one-dimensional harmonic oscillator in equilibrium with a heat reservoir at temperature $T$. The energy of the oscillator is given by
\begin{displaymath}
E = \frac{p^2}{2\,m} + \frac{1}{2}\kappa\, x^2,
\end{displaymath} (467)
where the first term on the right-hand side is the kinetic energy, involving the momentum $p$ and mass $m$, and the second term is the potential energy, involving the displacement $x$ and the force constant $\kappa$. Each of these terms is quadratic in the respective variable. So, in the classical approximation the equipartition theorem yields:
$\displaystyle \frac{\overline{p^2}}{2\,m}$ $\textstyle =$ $\displaystyle \frac{1}{2}\, k\,T,$ (468)
$\displaystyle \frac{1}{2}\kappa \,\overline{x^2}$ $\textstyle =$ $\displaystyle \frac{1}{2} \,k\,T.$ (469)
That is, the mean kinetic energy of the oscillator is equal to the mean potential energy which equals $(1/2)\,k\,T$. It follows that the mean total energy is
\begin{displaymath}
\overline{E} = \frac{1}{2}\, k\,T + \frac{1}{2}\, k\,T = k\,T.
\end{displaymath} (470)
According to quantum mechanics, the energy levels of a harmonic oscillator are equally spaced and satisfy
\begin{displaymath}
E_n = (n + 1/2) \,\hbar \,\omega,
\end{displaymath} (471)
where $n$ is a non-negative integer, and
\begin{displaymath}
\omega = \sqrt{\frac{\kappa}{m}}.
\end{displaymath} (472)
The partition function for such an oscillator is given by
\begin{displaymath}
Z = \sum_{n=0}^\infty \exp(-\beta \,E_n) = \exp[-(1/2)\,\bet...
... \,\omega]
\sum_{n=0}^\infty \exp(- n\,\beta\, \hbar\,\omega).
\end{displaymath} (473)
Now,
\begin{displaymath}
\sum_{n=0}^\infty \exp(- n\,\beta\, \hbar \,\omega) = 1 + \e...
...beta\,\hbar\,\omega)
+ \exp(-2\,\beta\,\hbar\,\omega) + \cdots
\end{displaymath} (474)
is simply the sum of an infinite geometric series, and can be evaluated immediately,
\begin{displaymath}
\sum_{n=0}^\infty \exp(- n\,\beta\, \hbar\, \omega) = \frac{1}{1-\exp(-\beta\,\hbar
\,\omega)}.
\end{displaymath} (475)
Thus, the partition function takes the form
\begin{displaymath}
Z = \frac{ \exp[-(1/2)\,\beta\,\hbar\,\omega]}{1-\exp(-\beta\,\hbar\,\omega)},
\end{displaymath} (476)
and
\begin{displaymath}
\ln Z = - \frac{1}{2}\,\beta\,\hbar\,\omega -\ln [1- \exp(-\beta\,\hbar\,\omega)]
\end{displaymath} (477)
The mean energy of the oscillator is given by [see Eq. (399)]
\begin{displaymath}
\overline{E} = - \frac{\partial}{\partial \beta} \ln Z = -
\...
...omega)\,\hbar\,\omega}
{1-\exp(-\beta\,\hbar\,\omega)}\right],
\end{displaymath} (478)
or
\begin{displaymath}
\overline{E} = \hbar \,\omega \left[ \frac{1}{2} + \frac{1}{\exp(\beta\, \hbar\,
\omega)-1}
\right].
\end{displaymath} (479)
Consider the limit
\begin{displaymath}
\beta\,\hbar\,\omega = \frac{\hbar\, \omega}{k\,T} \ll 1,
\end{displaymath} (480)
in which the thermal energy $k\,T$ is large compared to the separation $\hbar \,\omega$ between the energy levels. In this limit,
\begin{displaymath}
\exp(\beta\,\hbar\,\omega) \simeq 1 + \beta \,\hbar\, \omega,
\end{displaymath} (481)
so
\begin{displaymath}
\overline{E} \simeq \hbar\,\omega\left[\frac{1}{2} + \frac{1...
...meq \hbar\,\omega\left[ \frac{1}{\beta\,\hbar\,\omega}\right],
\end{displaymath} (482)
giving
\begin{displaymath}
\overline{E} \simeq \frac{1}{\beta} = k\,T.
\end{displaymath} (483)
Thus, the classical result (470) holds whenever the thermal energy greatly exceeds the typical spacing between quantum energy levels.
Consider the limit
\begin{displaymath}
\beta\,\hbar\,\omega = \frac{\hbar \,\omega}{k\,T} \gg 1,
\end{displaymath} (484)
in which the thermal energy is small compared to the separation between the energy levels. In this limit,
\begin{displaymath}
\exp(\beta\,\hbar\,\omega) \gg 1,
\end{displaymath} (485)
and so
\begin{displaymath}
\overline{E} \simeq \hbar\,\omega \,[ 1/2 + \exp(-\beta\,\hbar\,\omega)] \simeq
\frac{1}{2} \,\hbar \,\omega.
\end{displaymath} (486)
Thus, if the thermal energy is much less than the spacing between quantum states then the mean energy approaches that of the ground-state (the so-called zero point energy). Clearly, the equipartition theorem is only valid in the former limit, where $k\,T \gg \hbar\, \omega$, and the oscillator possess sufficient thermal energy to explore many of its possible quantum states.