explain the process of digestion in ruminants ?How do ruminants digestive food in two steps
Answers
Answer:
Due to half way digestion the food matter becomes softer than earlier and the animal can chew it well. Again they swallow the chewed food for the second time where further digestion is carried on. Thus ruminants digest their food in two steps as they swallow the same food twice.
Explanation:
Hope that this answers can help you.
Taxonomically, the suborder Ruminantia (also known as ruminants) is a lineage of herbivorous artiodactyls that includes the most advanced and widespread of the world's ungulates. The term 'ruminant' is not synonymous with Ruminantia.[citation needed] The suborder Ruminantia includes many ruminant species, but does not include tylopods and marsupials. The suborder Ruminantia includes six different families: Tragulidae, Giraffidae, Antilocapridae, Moschidae, Cervidae, and Bovidae.
Digestive system of ruminants
The primary difference between ruminants and nonruminants is that ruminants' stomachs have four compartments:
rumen—primary site of microbial fermentation
reticulum
omasum—receives chewed cud, and absorbs volatile fatty acids
abomasum—true stomach
The first two chambers are the rumen and the reticulum. These two compartments make up the fermentation vat, they are the major site of microbial activity. Fermentation is crucial to digestion because it breaks down complex carbohydrates, such as cellulose, and enables the animal to utilize them. Microbes function best in a warm, moist, anaerobic environment with a temperature range of 37.7 to 42.2 °C (100 to 108 °F) and a pH between 6.0 and 6.4. Without the help of microbes, ruminants would not be able to utilize nutrients from forages. The food is mixed with saliva and separates into layers of solid and liquid material. Solids clump together to form the cud or bolus.
The cud is then regurgitated and chewed to completely mix it with saliva and to break down the particle size. Smaller particle size allows for increased nutrient absorption. Fiber, especially cellulose and hemicellulose, is primarily broken down in these chambers by microbes (mostly bacteria, as well as some protozoa, fungi, and yeast) into the three volatile fatty acids (VFAs): acetic acid, propionic acid, and butyric acid. Protein and nonstructural carbohydrate (pectin, sugars, and starches) are also fermented. Saliva is very important because it provides liquid for the microbial population, recirculates nitrogen and minerals, and acts as a buffer for the rumen pH. The type of feed the animal consumes affects the amount of saliva that is produced.
Though the rumen and reticulum have different names, they have very similar tissue layers and textures, making it difficult to visually separate them. They also perform similar tasks. Together, these chambers are called the reticulorumen. The degraded digesta, which is now in the lower liquid part of the reticulorumen, then passes into the next chamber, the omasum. This chamber controls what is able to pass into the abomasum. It keeps the particle size as small as possible in order to pass into the abomasum. The omasum also absorbs volatile fatty acids and ammonia.
After this, the digesta is moved to the true stomach, the abomasum. This is the gastric compartment of the ruminant stomach. The abomasum is the direct equivalent of the monogastric stomach, and digesta is digested here in much the same way. This compartment releases acids and enzymes that further digest the material passing through. This is also where the ruminant digests the microbes produced in the rumen. Digesta is finally moved into the small intestine, where the digestion and absorption of nutrients occurs. The small intestine is the main site of nutrient absorption. The surface area of the digesta is greatly increased here because of the villi that are in the small intestine. This increased surface area allows for greater nutrient absorption. Microbes produced in the reticulorumen are also digested in the small intestine. After the small intestine is the large intestine. The major roles here are breaking down mainly fiber by fermentation with microbes, absorption of water (ions and minerals) and other fermented products, and also expelling waste. Fermentation continues in the large intestine in the same way as in the reticulorumen.
Only small amounts of glucose are absorbed from dietary carbohydrates. Most dietary carbohydrates are fermented into VFAs in the rumen. The glucose needed as energy for the brain and for lactose and milk fat in milk production, as well as other uses, comes from nonsugar sources, such as the VFA propionate, glycerol, lactate, and protein. The VFA propionate is used for around 70% of the glucose and glycogen produced and protein for another 20% (50% under starvation conditions).
Mark me as brainliest. And follow me.