Chemistry, asked by ItsShahil, 1 day ago

Explain the Raoult's law briefly?
for (5 mark question)​

Answers

Answered by Itzshahil018
5

Answer:

★It state that in the case of a solution of volatile liquid the particle vapour pressure of each component of the solution is directly proportional to its mole fraction

★Let as consider a solution of A&B must be volatile

  • The vapour pressure of pure A=P°A
  • The vapour pressure of pure A=P°AThe vapour pressure of pure B=P°B

Check this answer is correct

Answered by ItzImran
1

\star \: \:  \mathrm{Roult's \:  law  \: states \:  that \:  in \:  the }\:   \\ \mathrm{ case  \: of  \: a  \: solution \:  of  \: volatile } \\  \mathrm{ \:  liquids,  \: the  \: partial \:  vapour } \\  \mathrm{ \: pressure \:  of  \: each  \: component \:  of \: }  \\  \mathrm{ t he  \: solution \:  is  \: directly  } \\  \mathrm{\: proportional \:  to  \: its  \: mole  \: fraction.}

Roult's Law for the solution containing Volatile solute in Volatile Solvent:

★ Let us consider a solution of two components as A & B which must be volatile.

\mathsf{ \bullet The \:  vapour  \: pressure  \: of  \: pure \:  A =  P_A ^{0} }

\mathsf{ \bullet The \:  vapour  \: pressure  \: of  \: pure \:  A =   P_B^{0} }

\boxed{P_A  \propto \: X_A}

\boxed{P_A=k_A.X_A} \\ </p><p> \boxed{P_B=k_B.X_B}

 \mathtt{1) \: P_A=k_A.X_A}

\mathsf{For \:  pure  \: A  \: component \:  P_A = P_A^0;X_A=1}

\mathsf{P_A^0=k_A×1} \\  \\ </p><p>\mathsf{ P_A^0= k_A} \\  \\ </p><p>\mathsf{∴P_A=P_A^{0}X_A}

 \boxed{ \star \: \mathtt{It \:  is \:  similarly  \: applicable  \: to \:  P_B  \: </p><p>(i.e) \:  P_B= P_B^{0}X_B}}

\mathsf{P=P_A+P_B} \\ </p><p>\mathsf{= P_A^{0}X_A+P_B^{0}X_B} \\ </p><p>\mathsf{P=P_A^{0}X_A+P_B^0(1-x_{A})} \\ </p><p>\mathsf{P=P_A^{0}X_A+P_B^0-P_B^{0}X_A} \\ </p><p>\boxed{\mathrm{P=P_B^0+X_A(P_A^0-P_B^0)}}

★ Roult's Law for the solution containing Non-Volatile solute in Volatile Solvent:

★ A solution Containing non volatile solute (B) in volatile solvent (A) having the relative lowering of Vapour pressure is equal to mole fraction of the solute.

 \mathsf{ \underline{Derivation:}}

P_S \propto X_A \\ </p><p>Ps  = P^0Xa </p><p> \mathtt{where, } \mathsf{P^0= Vapour  \: pressure \:  of  \: pure  \: solvent }

\mathsf{P_{S}= P^{0}(1-X_B)=P^0-P^{0}_{XB}}</p><p>

\mathsf{P^S+P_{x_B}^0= P^0}

\mathsf{P_{x_B}^0= P^0-P^s}

  \boxed{\mathtt{X_B=  \frac{P^0-P^s}{P^0} }}

Similar questions