Social Sciences, asked by kassymusonda1, 11 months ago

explain the relationship between probability sampling and generalizability of research findings​

Answers

Answered by anandankichhu
0

Answer:

7.3 Sampling in Quantitative Research

LEARNING OBJECTIVES

Describe how probability sampling differs from nonprobability sampling.

Define generalizability, and describe how it is achieved in probability samples.

Identify the various types of probability samples, and provide a brief description of each.

Quantitative researchers are often interested in being able to make generalizations about groups larger than their study samples. While there are certainly instances when quantitative researchers rely on nonprobability samples (e.g., when doing exploratory or evaluation research), quantitative researchers tend to rely on probability sampling techniques. The goals and techniques associated with probability samples differ from those of nonprobability samples. We’ll explore those unique goals and techniques in this section.

Probability Sampling

Unlike nonprobability sampling, probability sampling refers to sampling techniques for which a person’s (or event’s) likelihood of being selected for membership in the sample is known. You might ask yourself why we should care about a study element’s likelihood of being selected for membership in a researcher’s sample. The reason is that, in most cases, researchers who use probability sampling techniques are aiming to identify a representative sample from which to collect data. A representative sample is one that resembles the population from which it was drawn in all the ways that are important for the research being conducted. If, for example, you wish to be able to say something about differences between men and women at the end of your study, you better make sure that your sample doesn’t contain only women. That’s a bit of an oversimplification, but the point with representativeness is that if your population varies in some way that is important to your study, your sample should contain the same sorts of variation.

Obtaining a representative sample is important in probability sampling because a key goal of studies that rely on probability samples is generalizability. In fact, generalizability is perhaps the key feature that distinguishes probability samples from nonprobability samples. Generalizability refers to the idea that a study’s results will tell us something about a group larger than the sample from which the findings were generated. In order to achieve generalizability, a core principle of probability sampling is that all elements in the researcher’s target population have an equal chance of being selected for inclusion in the study. In research, this is the principle of random selection. Random selection is a mathematical process that we won’t go into too much depth about here, but if you have taken or plan to take a statistics course, you’ll learn more about it there. The important thing to remember about random selection here is that, as previously noted, it is a core principal of probability sampling. If a researcher uses random selection techniques to draw a sample, he or she will be able to estimate how closely the sample represents the larger population from which it was drawn by estimating the sampling error. Sampling error is a statistical calculation of the difference between results from a sample and the actual parameters of a population.

please follow me...

and mark brainleist

Similar questions