Math, asked by varshagupta39, 1 year ago

explain the steps also

Attachments:

Answers

Answered by shadowsabers03
1

We know,

\text{In the equation\ $ax^2+bx+c=0,$ if \ $x\in\{\alpha,\ \beta \},$}\\\\\text{then \ $\alpha+\beta=-\dfrac{b}{a}\quad\&\quad\alpha\beta=\dfrac{c}{a}.$}

So,

a=3\quad;\quad b=-5\quad;\quad c=4\\\\\\\alpha+\beta=-\dfrac{-5}{3}=\dfrac{5}{3}\\\\\\\alpha\beta=\dfrac{4}{3}

Now,

\begin{aligned}&\dfrac{1}{\alpha}+\dfrac{1}{\beta}-2\alpha\beta\\\\\implies\ \ &\dfrac{\alpha+\beta}{\alpha\beta}-2\alpha\beta\\\\\implies\ \ &\dfrac{\left(\dfrac{5}{3}\right)}{\left(\dfrac{4}{3}\right)}-2\cdot\dfrac{4}{3}\\\\\implies\ \ &\dfrac{5}{4}-\dfrac{8}{3}\\\\\implies\ \ &\mathbf{-\dfrac{17}{12}}\end{aligned}

Similar questions