Explain the steps plzz
Attachments:
Answers
Answered by
0
this is the solution of 4(ii)......
Attachments:
Answered by
1
(i)
LHS = cos(A+B) cos(A-B) ------ (*)
We know that cos(A + B) = cosA cosB - sin A sin B ----- (1)
We know that cos(A - B) = cos A cos B + sin A sin B ----- (2)
Substitute (1) & (2) in (*), we get
(cos A cosB - sinA sinB)(cosA cosB + sinA sinB)
We know that (a-b)(a + b) = a^2 - b^2
Where a = cosAcosB, b = sinAsinB
cos^2Acos^2B - sin^2Asin^2B
(1 - sin^2A)cos^2B - sin^2A(1-cos^2B)
cos^2B - cos^2Bsin^2A - sin^2A + sin^2Acos^2B
cos^2B - sin^2A
LHS = RHS.
(ii) LHS = sin(A + B)sin(A-B) -------- (*)
We know that sin(A + B) = sinAcosB + cosAsinB ----- (1)
We know that sin(A-B) = sinAcosB - cosASinB ------ (2)
Substitute (1) & (2) in (*), we get
(sinA cosB + cosA sinB)(sinAcosB - cosAsinB)
We know that (a + b)(a - b) = a^2 - b^2
Where a = sinAcosB, b = cosAsinB
sin^2A cos^2B - cos^2Asin^2B
(1-cos^2A)cos^2B - cos^2A(1 - cos^2B)
cos^2B - cos^2Acos^2B - cos^2A + cos^2Acos^2B
cos^2B - cos^2A
LHS = RHS.
<!Hope this helps!>
LHS = cos(A+B) cos(A-B) ------ (*)
We know that cos(A + B) = cosA cosB - sin A sin B ----- (1)
We know that cos(A - B) = cos A cos B + sin A sin B ----- (2)
Substitute (1) & (2) in (*), we get
(cos A cosB - sinA sinB)(cosA cosB + sinA sinB)
We know that (a-b)(a + b) = a^2 - b^2
Where a = cosAcosB, b = sinAsinB
cos^2Acos^2B - sin^2Asin^2B
(1 - sin^2A)cos^2B - sin^2A(1-cos^2B)
cos^2B - cos^2Bsin^2A - sin^2A + sin^2Acos^2B
cos^2B - sin^2A
LHS = RHS.
(ii) LHS = sin(A + B)sin(A-B) -------- (*)
We know that sin(A + B) = sinAcosB + cosAsinB ----- (1)
We know that sin(A-B) = sinAcosB - cosASinB ------ (2)
Substitute (1) & (2) in (*), we get
(sinA cosB + cosA sinB)(sinAcosB - cosAsinB)
We know that (a + b)(a - b) = a^2 - b^2
Where a = sinAcosB, b = cosAsinB
sin^2A cos^2B - cos^2Asin^2B
(1-cos^2A)cos^2B - cos^2A(1 - cos^2B)
cos^2B - cos^2Acos^2B - cos^2A + cos^2Acos^2B
cos^2B - cos^2A
LHS = RHS.
<!Hope this helps!>
Similar questions