Biology, asked by Adivs2, 1 year ago

explain the structure,function and types of RNA

Answers

Answered by arslanivanovich
12

Answer:

Here are the broad description.

Explanation:

Structurally speaking, ribonucleic acid (RNA), is quite similar to DNA. However, whereas DNA molecules are typically long and double stranded, RNA molecules are much shorter and are typically single stranded. RNA molecules perform a variety of roles in the cell but are mainly involved in the process of protein synthesis (translation) and its regulation.

RNA Structure

RNA is typically single stranded and is made of ribonucleotides that are linked by phosphodiester bonds. A ribonucleotide in the RNA chain contains ribose (the pentose sugar), one of the four nitrogenous bases (A, U, G, and C), and a phosphate group. The subtle structural difference between the sugars gives DNA added stability, making DNA more suitable for storage of genetic information, whereas the relative instability of RNA makes it more suitable for its more short-term functions. The RNA-specific pyrimidine uracil forms a complementary base pair with adenine and is used instead of the thymine used in DNA. Even though RNA is single stranded, most types of RNA molecules show extensive intramolecular base pairing between complementary sequences within the RNA strand, creating a predictable three-dimensional structure essential for their function (Figure 1 and Figure 2).

a) diagrams of ribose (in RNA) and deoxyribose (in DNA). Both have a pentagon shape with Oxygen at the top point of the pentagon. Both have an OH at carbon 1 and 3 and a CH2OH at carbon 4 (this last carbon is carbon 5). The difference is that ribose has an OH at carbon 2 and deoxyribose has an H at carbon 2. B) diagrams of thymine (T in DNA) and Uracil (U in RNA). Both have a single hexagon ring containing carbons and nitrogens. Both have a double bound O at the top carbon, and the bottom left carbon. The difference is that the top right carbon has an H in uracil and a CH3 in thymine.

Figure 1. (a) Ribonucleotides contain the pentose sugar ribose instead of the deoxyribose found in deoxyribonucleotides. (b) RNA contains the pyrimidine uracil in place of thymine found in DNA.

a) A diagram of DNA and RNA. DNA has the double helix shape with the helix of sugar-phosphates on the outside and the base pairs on the inside. RNA has a single helix of sugar-phosphates with nitrogenous bases along the length of the helix. B) A diagram showing RNA folding upon itself. The bases attached to the sugar-phosphate backbone can form hydrogen bonds if there are stretches of complimentary bases at some distance from each other on the long strand. Other regions do not have these hydrogen bonds.

Figure 2. (a) DNA is typically double stranded, whereas RNA is typically single stranded. (b) Although it is single stranded, RNA can fold upon itself, with the folds stabilized by short areas of complementary base pairing within the molecule, forming a three-dimensional structure.

THINK ABOUT IT

How does the structure of RNA differ from the structure of DNA?

Functions of RNA in Protein Synthesis

Cells access the information stored in DNA by creating RNA to direct the synthesis of proteins through the process of translation. Proteins within a cell have many functions, including building cellular structures and serving as enzyme catalysts for cellular chemical reactions that give cells their specific characteristics. The three main types of RNA directly involved in protein synthesis are messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).

In 1961, French scientists François Jacob and Jacques Monod hypothesized the existence of an intermediary between DNA and its protein products, which they called messenger RNA.[1] Evidence supporting their hypothesis was gathered soon afterwards showing that information from DNA is transmitted to the ribosome for protein synthesis using mRNA. If DNA serves as the complete library of cellular information, mRNA serves as a photocopy of specific information needed at a particular point in time that serves as the instructions to make a protein.

The mRNA carries the message from the DNA, which controls all of the cellular activities in a cell. If a cell requires a certain protein to be synthesized, the gene for this product is “turned on” and the mRNA is synthesized through the process of transcription (see RNA Transcription). The mRNA then interacts with ribosomes and other cellular machinery (Figure 3) to direct the synthesis of the protein it encodes during the process of translation (see Protein Synthesis). mRNA is relatively unstable and short-lived in the cell, especially in prokaryotic cells, ensuring that proteins are only made when needed.

Answered by rohithanwante
4

Answer:

kay pata sahi hai kay answer muza lagta nahi ki sahi hoga

Similar questions