explain the surface tension on the basic of molecular theory
Answers
Answer:
Surface tension has been well- explained by the molecular theory of matter. According to this theory, cohesive forces among liquid molecules are responsible for the phenomenon of surface tension. The molecules well inside the liquid are attracted equally in all directions by the other molecules.
Explanation:
GIVEN:−
A body has displacement (2, 4, -6) to (6, -4, 4) under a constant force \sf{2\hat{i}+3\hat{j}-\hat{k}}2i^+3j^−k^ .
\bigstar\ \sf{\overrightarrow{F}=2\hat{i}+3\hat{j}-\hat{k}}★ F=2i^+3j^−k^
\large \underline{\underline{\sf{\color{orange}{TO\ FIND:-}}}}TO FIND:−
The work done by the body.
\large \underline{\underline{\sf{\color{orange}{SOLUTION:-}}}}SOLUTION:−
According to the question,
\bullet\ \sf{\overrightarrow{r_1}=2\hat{i}+4\hat{j}-6\hat{k}}∙ r1=2i^+4j^−6k^
\bullet\ \sf{\overrightarrow{r_2}=6\hat{i}-4\hat{j}+4\hat{k}}∙ r2=6i^−4j^+4k^
\sf{\to \Delta \overrightarrow{r}=\overrightarrow{D}=\overrightarrow {r_2}-\overrightarrow {r_1}}→Δr=D=r2−r1
Solving further :-
\longrightarrow \sf{\Delta \overrightarrow{r}= 6\hat{i}-4\hat{j}+4\hat{k}-(2\hat{i}+4\hat{j}-6\hat{k}) }⟶Δr=6i^−4j^+4k^−(2i^+4j^−6k^)
\longrightarrow \sf{\Delta \overrightarrow{r}= 6\hat{i}-4\hat{j}+4\hat{k}-2\hat{i}-4\hat{j}+6\hat{k}}⟶Δr=6i^−4j^+4k^−2i^−4j^+6k^
\longrightarrow \sf{\Delta \overrightarrow{r}= 4\hat{i}-8\hat{j}+10\hat{k}}⟶Δr=4i^−8j^+10k^
__________________
We are given with :
\dag\ \sf{\overrightarrow{F}=2\hat{i}+3\hat{j}-\hat{k}}† F=2i^+3j^−k^
We know that,
\sf{Work\ done,\ W=\overrightarrow{F}.\overrightarrow{D}}Work done, W=F.D
Solving further :-
\sf{\longrightarrow W= (2\hat{i}+3\hat{j}-\hat{k}).(4\hat{i}-8\hat{j}+10\hat{k})}⟶W=(2i^+3j^−k^).(4i^−8j^+10k^)
\sf{\longrightarrow W= 8-24-10}⟶W=8−24−10
\boxed{\bf{\longrightarrow W= -26\ J}}⟶W=−26 J
OR
\boxed{\bf{\longrightarrow W= -26\ N.m}}⟶W=−26 N.m
Therefore, the work done by the body is -26 Joules or -26 Newton·meter.