explain the theory of ac circuit with resistor
Answers
Answer:
resister it so that so please send us good and meaningful q
Explanation:
In the previous tutorials we have looked at resistors, their connections and used Ohm’s Law to calculate the voltage, current and power associated with them. In all cases both the voltage and current has been assumed to be of a constant polarity, flow and direction, in other words Direct Current or DC.
But there is another type of supply known as alternating current or AC whose voltage switches polarity from positive to negative and back again over time and also whose current with respect to the voltage oscillates back and forth. The oscillating shape of an AC supply follows that of the mathematical form of a “sine wave” which is commonly called a Sinusoidal Waveform. Therefore, a sinusoidal voltage can be defined as V(t) = Vmax sin ωt.
When using pure resistors in AC circuits that have negligible values of inductance or capacitance, the same principals of Ohm’s Law, circuit rules for voltage, current and power (and even Kirchhoff’s Laws) apply as they do for DC resistive circuits the only difference this time is in the use of the instantaneous “peak-to-peak” or “rms” quantities.
When working with AC alternating voltages and currents it is usual to use only “rms” values to avoid confusion. The rms or “root mean squared” value of an AC waveform is the effective or DC value equivalent for an AC waveform. Also the schematic symbol used for defining an AC voltage source is that of a “wavy” line as opposed to a battery symbol for DC and this is shown below.