Explain the trigonometry ratio and indenties
Answers
Answered by
0
Answer:
what is the meaning for this question
Answered by
0
Step-by-step explanation:
Basic Formulas
There are basically 6 ratios used for finding the elements in Trigonometry. They are called trigonometric functions. The six trigonometric functions are sine, cosine, secant, co-secant, tangent and co-tangent.
By using a right-angled triangle as a reference, the trigonometric functions or identities are derived:
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
The Reciprocal Identities are given as:
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
All these are taken from a right angled triangle. With the height and base side of the right triangle given, we can find out the sine, cosine, tangent, secant, cosecant, and cotangent values using trigonometric formulas. The reciprocal trigonometric identities are also derived by using the trigonometric functions.
Trigonometry Table
Below is the table for trigonometry formulas for angles that are commonly used for solving problems.
Angles (In Degrees)0°30°45°60°90°180°270°360°Angles (In Radians)0°π/6π/4π/3π/2π3π/22πsin01/21/√2√3/210-10cos1√3/21/√21/20-101tan01/√31√3∞0∞0cot∞√311/√30∞0∞csc∞2√22/√31∞-1∞sec12/√3√22∞-1∞1
Periodicity Identities (in Radians)
These formulas are used to shift the angles by π/2, π, 2π, etc. They are also called co-function identities.
sin (π/2 – A) = cos A & cos (π/2 – A) = sin A
sin (π/2 + A) = cos A & cos (π/2 + A) = – sin A
sin (3π/2 – A) = – cos A & cos (3π/2 – A) = – sin A
sin (3π/2 + A) = – cos A & cos (3π/2 + A) = sin A
sin (π – A) = sin A & cos (π – A) = – cos A
sin (π + A) = – sin A & cos (π + A) = – cos A
sin (2π – A) = – sin A & cos (2π – A) = cos A
sin (2π + A) = sin A & cos (2π + A) = cos A
All trigonometric identities are cyclic in nature. They repeat themselves after this periodicity constant. This periodicity constant is different for different trigonometric identities. tan 45° = tan 225° but this is true for cos 45° and cos 225°. Refer to the above trigonometry table to verify the values.
Similar questions