Physics, asked by kamir7112, 10 months ago

explain the variation in acceleration due to gravity with height and depth​

Answers

Answered by Anonymous
3

 \mathfrak{ \huge{ \red{ \underline{ \underline{Answer}}}}}

 \star \:  \:  \boxed{ \blue{variation \: in \: g \: due \: to \: depth}} \\  \\  \implies \: variation \: in \: g \: due \: to \: depth \: d \: follows \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \orange{g \propto \: d}} \\  \\  \implies \:  \boxed{ \blue{g = g(1 -  \frac{d}{r})}}  \\  \\  \implies \: d = depth \: and \: r = radii \: of \: earth \\  \\  \star \:  \:  \boxed{ \blue{variation \: in \: g \: due \: to \: height}} \\  \\  \implies \: variation \: in \: g \: due \: to \: height \: h \: follows \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{ \orange{g \propto \:  \frac{1}{ {r}^{2} }}}  \\  \\  \implies \:  \boxed{ \blue{g =  \frac{g}{ ({1 +  \frac{h}{r}) }^{2} }}}  \\  \\  \implies \: h = height \: from \: surface \: of \: earth

Similar questions