Physics, asked by ayushanand0, 8 months ago

explain this , i didnt get it

try

the first who write answer will be marked as brainlist

Attachments:

Answers

Answered by CunningKing
24

\displaystyle{\sf{\frac{d}{dx}(x+\frac{1}{\sqrt{x} } )^2 }}

\displaystyle{\sf{By\ power\ rule:-}}

\displaystyle{\sf{=2(x+\frac{x}{\sqrt{x} } ).\frac{d}{dx}(x+\frac{1}{\sqrt{x} } ) }}

\displaystyle{\sf{This\ differentiation\ is\ linear:-}}

\displaystyle{\sf{=2(x+\frac{1}{\sqrt{x} } )\bigg[\frac{d}{dx}(x)+\frac{d}{dx}(\frac{1}{\sqrt{x} } )\bigg]}}

\sf{Applying\ power\ rule:-}

\displaystyle{\sf{=2(x+\frac{1}{\sqrt{x} })\bigg[1+(-\frac{1}{2})x^{-\frac{1}{2}-1 } \bigg] }}

\displaystyle{\sf{=2\bigg(1-\frac{1}{2x^\frac{3}{2} }  \bigg)\bigg(x+\frac{1}{\sqrt{x} }  \bigg)}}

\displaystyle{\sf{By\ simplifying:-}}

\boxed{\displaystyle{\sf{=\frac{2x^3+x^\frac{3}{2}-1 }{x^2} }}}

\rule{150}2

Please mark as the brainliest

Similar questions