Physics, asked by dityashahni, 1 year ago

explain this question please!

Attachments:

Answers

Answered by rakeshmohata
5
Hope u like my process
=====================

=> The acceleration varies with time (t) as bt.

So,..

 = > \bf \: \frac{d(v)}{dt} = \it \: \blue{bt}

=> Velocity at time 0 is  \bf \blue{v _{o}}

Now..

Integrating the change in Acceleration
=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=
We get,

 = > \int \: \it \: dv= \int(bt)dt = \blue{b} \int \blue{t}dt \\ \\ = > \bf \: v = \blue{b \frac{ {t}^{2} }{2} + u} \\ \\ where \: \bf \: v \: \: and \: \: u = \it velocity \: \: \: \: \: \: \: \: \: \: \\ \\ \bf \: \: \: \: \: \: \: \: \underline{ now }\: \\ \\ at \: \: time \: \: (t) = \underline{\blue{0}} \\ \\ = > \bf v_{o} = 0 + u \\ \\ = > u = \underline{ \bf \blue{ v_{o}}} \\ \\ \\ \\

Now..
To get the distance trvalled we have to again integrate the velocity.

So..

 = > v = \frac{ds}{dt} = \blue{ \frac{1}{2}b {t}^{2} + v_{o} } \\ \\ = > \int \: ds \: = \blue{ \frac{1}{2}b } \int \: \blue{{t}^{2} } \: dt + \blue{ v_{o}} \int \: dt \\ \\ = > distance(s) = \blue {(\frac{1}{2} \times b \times \frac{ {t}^{3} }{3} )+ v_{o}t } \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \blue{ \bold{ v_{o}(t) + \frac{1}{6} b {t}^{3} }}
At time (t) =0 distance travelled will be 0, so there is no constant term after 2nd integration.
_____________________________
Hence option c (✔️) is correct.
____________________________
Hope this is ur required answer❤️

Proud to help you ❤️
Similar questions