Explain Trigonometry functions with table and give some common Trigonometry Formuals with 1 example only .
Answers
EXPLANATION.
Fundamental trigonometric identities.
(1) = sin²θ + cos²θ = 1.
(2) = 1 + tan²θ = sec²θ.
(3) = 1 + cot²θ = cosec²θ.
Sign of trigonometric ratios of function.
In first quadrant all trigonometric functions is (+ve).
In second quadrant sinθ and cosecθ are +ve.
In third quadrant tanθ and cotθ are +ve.
In fourth quadrant cosθ and secθ are +ve.
By Pythagoras theorem, we get.
⇒ P² + B² = H².
Hypotenuse > Perpendicular > Base.
(1) = sinθ = perpendicular/hypotenuse.
(2) = cosθ = base/hypotenuse.
(3) = tanθ = perpendicular/base.
(4) = cosecθ = hypotenuse/perpendicular.
(5) = secθ = hypotenuse/base.
(6) = cotθ = base/perpendicular.
(1) = secθ = 1/cosθ.
(2) = cosecθ = 1/sinθ.
(3) = tanθ = sinθ/cosθ.
(4) = cotθ = cosθ/sinθ.
(1) = sin(-θ) = - sinθ.
(2) = cos(-θ) = cosθ.
(3) = tan(-θ) = - tanθ.
(4) = cosec(-θ) = - cosecθ.
(5) = sec(-θ) = secθ.
(6) = cot(-θ) = - cotθ.
Sum and difference formula.
(1) = sin(A + B) = sin(A).cos(B) + cos(A).sin(B).
(2) = sin(A - B) = sin(A).cos(B) - cos(A).sin(B).
(3) = cos(A + B) = cos(A).cos(B) - sin(A).sin(B).
(4) = cos(A - B) = cos(A).cos(B) + sin(A).sin(B).
(5) = tan(A + B) = tan(A) + tan(B)/1 - tan(A).tan(B).
(6) = tan(A - B) = tan(A) - tan(B)/1 + tan(A).tan(B).
Trigonometrical ratios of multiple angles.
(1) = sin2θ = 2sinθ.cosθ = 2tanθ/1 + tan²θ.
(2) = cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) = tan2θ = 2tanθ/1 - tan²θ.
(4) = sin3θ = 3sinθ - 4sin³θ.
(5) = cos3θ = 4cos³θ - 3cosθ.
(6) = tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.
(7) = sin(θ/2) = √1 - cosθ/2.
(8) = cos(θ/2) = √1 + cosθ/2.
(9) = tan(θ/2) = √1 - cosθ/1 + cosθ = 1 - cosθ/sinθ = sinθ/1 + cosθ.
Trigonometrical ratios :
- sin ∅ = P/H
- cos ∅ = B/H
- tan ∅ = P/B
- cot = B/P
- sec = H/B
- cosec = H/P
Here,
P refers Perpendicular or Height
B refers Base
H refers Hypotentuse
Reciprocal Relations :
From the above relations it follows that :-
- sin ∅ × cosec ∅ = 1
- cos ∅ × sec ∅ = 1
- tan ∅ × cot ∅ = 1
Quotient Relations :
Square Relations :
- sin² ∅ + cos² ∅ = 1
- sec² ∅ – tan² ∅ = 1
- cosec² ∅ – cot² ∅ = 1
Remark : sin² ∅ means (sin ∅)² and sin² ∅ is read as sine squared ∅.
Similarly it is same for others too !!
Trigonometrical ratios of complementary angles :
- sin(90° – ∅) = cos ∅
- cos(90° – ∅) = sin ∅
- tan(90° – ∅) = cot ∅
- cot(90° – ∅) = tan ∅
- sec(90° – ∅) = cosec ∅
- cosec(90° – ∅) = sec ∅