Physics, asked by kalingswell74, 4 months ago

explain two bodies in contact on a horizontal surface .for 5mark quiz from 11th std​


ghlftofjvbl: hii
ayankhan8099yd: hii
ayankhan8099yd: how are you
ghlftofjvbl: i am fine
ghlftofjvbl: you
ghlftofjvbl: your name
ayankhan8099yd: afsha
ghlftofjvbl: your village
ayankhan8099yd: nua your name

Answers

Answered by MagicalLove
482

Explanation:

 \bf \huge{ \underline{ \underline{ \purple{AnswEr:-}}}}

Consider two blocks of masses \sf m_1 \:\: and \:\: m_2 \:\:(m_1>m_2) are kept in contact with each other on a smooth horizontal frictionless surface

To find Acceleration:-

 \sf \: m = m_1 + m_2

By applying Newton's 2nd law :

 \sf \vec{F} = m \vec{a}

 \sf \:F  \vec{i} = ma \vec{i}

 \bf \: m = m_1 + m_2

Comparing the components,

 \sf \: F = ma

 \sf \: F = (m_1 + m_2)a

 \sf \: a =  \frac{F}{m_1 + m_2}

 \sf \: The \:  \:  force  \:  \: exerted \:  \:  by  \:  \: the  \:  \: block  \:  \: \sf m_1 \:\: on \: m_2 \:  \: due  \:  \: to  \:  \: its  \:  \: motion  \:  \: is  \:  \: called \:  \:  force  \:  \: of \:  \:  contact.( \vec{F}_{21})

 \sf \: According  \:  \: to  \:  \: Newton's  \:  \: third \:  \:  law \:  the  \: block \:  m_2  \: will   \: exert  \:  \: an \:  \:  equal \:  and  \: opposite \:  reaction  \: force  \: (\vec{F}_{12})

Taking block m1 alone,

Refer the attachment for diagram

In x direction , applying Newton's 3rd law

 \sf \: \vec{ F } = m \vec{a}

 \sf \: F  \vec{i} + F _{12}( \vec{ - i}) = m _1a \vec{i}

 \sf \: F  \vec{i} - F _{12} \vec{i} = m _1a \vec{i}

Comparing the components,

 \sf \: F  - F _{12} = m_1a

 \sf \: F _{12} = F  - m _1a

we know that,

 \bf \: a \:  =  \frac{F }{m _1 +m _2 }

 \sf \: F _{12} = F  - m _1a

 \sf \: F _{12} = F (1 -  \frac{m _1}{m _1 + m _2} )

F _{12} = F ( \frac{m _2}{m _1 +m _2 } )

 \sf \vec{F _{12}} =  \frac{ -F m_2 }{m _1 + m _2}  \vec{i}

Taking block m2 alone,

Refer the attachment for diagram

 \sf \vec{F} = m \vec{a}

 \sf \: F_{21} \vec{i} = m_2a \vec{i}

Comparing the components

F_{21} = m_2a

we know that,

 \bf \: a =  \frac{F}{m_1 + m_2}

 \sf \: F_{21}  \frac{=m_2 F}{=m_1 +m_2 }

 \sf \vec{F_{21}} =  \frac{m_2F}{m_1 + m_2}  \vec{i} \\

We know that,

 \bf \: F_{12} =  \frac{-m_2F}{m_1+m_2}  \\

 \huge \bigstar \boxed{ \mathcal { \blue{ \vec{F_{21}} =  \vec{ - F_{12}}}}}

#தமிழ் ❤️

Attachments:

gotoo000612y: Outstanding Answer!
gotoo000612y: Great Job :)
MagicalLove: Tq p:
Anonymous: great answer
ghlftofjvbl: hi
ayankhan8099yd: hii
ayankhan8099yd: how are you all
Similar questions