Science, asked by dhruven25052005, 8 months ago

-
explain tyndall effect with experiment​

Answers

Answered by Anonymous
3

The Tyndall effect is the phenomenon in which the particles in a colloid scatter the beams of light that are directed at them. This effect is exhibited by all colloidal solutions and some very fine suspensions. Therefore, it can be used to verify if a given solution is a colloid. The intensity of scattered light depends on the density of the colloidal particles as well as the frequency of the incident light.

When a beam of light passes through a colloid, the colloidal particles present in the solution do not allow the beam to completely pass through. The light collides with the colloidal particles and is scattered (it deviates from its normal trajectory, which is a straight line). This scattering makes the path of the light beam visible, as illustrated below.

Tyndall Effect

Generally, blue light is scattered to a greater extent when compared to red light. This is because the wavelength of blue light is smaller than that of red light. This is the reason why the smoke released by motorcycles sometimes appears blue.

The Tyndall effect was first discovered by (and is named after) the Irish physicist John Tyndall. The diameters of the particles that cause the Tyndall effect can range from 40 to 900 nanometers (1 nanometer = 10-9 meter). In comparison, the wavelength of the visible light spectrum ranges from 400 to 750 nanometers.

Answered by shiny5079
1

Explanation:

I hope it is help full for you dear

Attachments:
Similar questions