Math, asked by jarryllinwj, 3 months ago

Explain why the discriminant affects the type of roots for a quadratic equation.
Hint : x=\frac{-b+\sqrt{b^2-4ac} }{2a}
( It's a ±, by the way )

Answers

Answered by abhijayraj7
0

Answer:

The quadratic formula says that

x=\dfrac{-\goldD{b}\pm\sqrt{\goldD{b}^2-4\purpleD{a}\redD{c}}}{2\purpleD{a}}x=  

2a

−b±  

b  

2

−4ac

​  

 

​  

x, equals, start fraction, minus, start color #e07d10, b, end color #e07d10, plus minus, square root of, start color #e07d10, b, end color #e07d10, squared, minus, 4, start color #7854ab, a, end color #7854ab, start color #e84d39, c, end color #e84d39, end square root, divided by, 2, start color #7854ab, a, end color #7854ab, end fraction

for any quadratic equation like:

\purpleD{a}x^2 + \goldD{b}x + \redD{c} = 0ax  

2

+bx+c=0

Step-by-step explanation:

Similar questions