Explain with sutable examples., the interactions between the physical and biological enviornment
Please answer
Answers
Answer:
x + 2y + 3z = 0
2y + 3z = - x -- equation (1)
x + 2y = - 3z -- equation (2)
x + 3z = - 2y -- equation (3).
Also given that,
x³ + 4y³ + 9z³ = 18xyz
⟹ (x³ + 4y³ + 9z³)/xyz = 18 -- equation (4)
We have to find:-
\implies \sf \: \dfrac{(x + 2y) ^{2} }{xy} + \dfrac{(2y + 3z) ^{2} }{yz} + \dfrac{(3z + x) ^{2} }{xz} ⟹
xy
(x+2y)
2
+
yz
(2y+3z)
2
+
xz
(3z+x)
2
Putting the respective values from equations (1) , (2) & (3) we get,
\implies \sf \: \dfrac{( - 3z) ^{2} }{xy} + \dfrac{( - x) ^{2} }{yz} + \dfrac{( - 2y) ^{2} }{xz} ⟹
xy
(−3z)
2
+
yz
(−x)
2
+
xz
(−2y)
2
Taking LCM we get,
\begin{gathered} \implies \sf \: \dfrac{(yz)(xz)(9 {z}^{2} ) +(xy)(xz)(x ^{2} ) + (xy)(yz)( 4y ^{2} )}{xy \times yz \times xz} \\ \\ \\ \implies \sf \: \dfrac{ 9xy {z}^{4} + {x}^{4}yz + 4xy ^{4}z }{(xyz) ^{2} } \\ \\ \\ \implies \sf \: \frac{xyz( 9 {z}^{3} + {x}^{3} + 4y ^{3} ) }{(xyz)(xyz)} \\ \\ \\ \implies \sf \: \frac{ {x}^{3} + 4 {y}^{3} + 9 {z}^{3} }{xyz} \\ \\ \\ \implies \underline{ \underline{ \red{\sf \: 18}}} \: \: \: \: \: \sf \: [ \because \: from \: equation \: (4)]\end{gathered}
⟹
xy×yz×xz
(yz)(xz)(9z
2
)+(xy)(xz)(x
2
)+(xy)(yz)(4y
2
)
⟹
(xyz)
2
9xyz
4
+x
4
yz+4xy
4
z
⟹
(xyz)(xyz)
xyz(9z
3
+x
3
+4y
3
)
⟹
xyz
x
3
+4y
3
+9z
3
⟹
18
[∵fromequation(4)]
Answer:
Physical environment derives most of its energy from the Sun. The biological environment, on the other hand, consists of all the living beings, such as humans, animals and micro-organisms. ... For example, some animals go into hibernation during winters and humans change their clothing according to the change in climate.