Explaination of the concept of Euclid's division lemma? with example
Note - No copied answers ❗❗
Answers
Answered by
2
Answer:
Definition: Euclid's Division Lemma states that, if two positive integers “a” and “b”, then there exists unique integers “q” and “r” such that which satisfies the condition a = bq + r where 0 ≤ r ≤ b. ... In this example, 9 is the divisor, 58 is the dividend, 6 is the quotient and 4 is the remainder.
Answered by
1
Answer:
Definition: Euclid's Division Lemma states that, if two positive integers “a” and “b”, then there exists unique integers “q” and “r” such that which satisfies the condition a = bq + r where 0 ≤ r ≤ b. ... In this example, 9 is the divisor, 58 is the dividend, 6 is the quotient and 4 is the remainder.
Similar questions