Math, asked by fouzsami645, 1 year ago

Explained answers for these please
1-81y²
36-121y²
121a²-64b²c²
81b²4²-25p²a²

Answers

Answered by BrainlyQueen01
23
\huge{\underline{\bold{Solution:}}}

 \bold{1)\: 1 - 81y {}^{2} } \\  \\  =  > (1) {}^{2}  - (9y) {}^{2}  \\  \\   \bold{using \: identity \: ..} \\  \\   {\bold{a {}^{2} - b {}^{2}   = (a + b)(a - b) }} \\  \\  =  > (1) {}^{2}   - (9y) {}^{2}   \\  \\ \boxed{ \bold{ \therefore (1  +  9y)( 1- 9y)}}

 \bold{2) \:  \: 36 - 121y {}^{2} } \\  \\  \bold{ =  > (6) {}^{2} - (11y) {}^{2}  } \\  \\ \bold{using \: identity \: ..} \\  \\   {\bold{a {}^{2} - b {}^{2}   = (a + b)(a - b) }} \\  \\ \boxed { \bold{  \therefore (6 + 11y)(6 - 11y)}} \\  \\
 \bold{3) \:  \: 121a {}^{2}  - 64b {}^{2} c {}^{2} } \\  \\  \bold{ =  > (11a) {}^{2}  - (8bc) {}^{2} } \\  \\ \bold{using \: identity \: ..} \\  \\   {\bold{a {}^{2} - b {}^{2}   = (a + b)(a - b) }} \\  \\   \boxed{  \bold  { \therefore ( 11a + 8bc)(11a -8bc) }}


 \bold{4) \:  \: 81b {}^{2}4 {}^{2}   - 25p {}^{2}a {}^{2}  } \\  \\  \bold{(18b) {}^{2}  - (5pa) {}^{2} }\\  \\  \bold{using \: identity \: ..} \\  \\   {\bold{a {}^{2} - b {}^{2}   = (a + b)(a - b) }} \\  \\   \boxed{\bold{ \therefore(18b  +  5pa)(18b - 5pa)}}

\huge{\underline{\bold{Thanks!}}}

BrainlyQueen01: :)
Answered by SmãrtyMohït
13
Here is your solution

In this factorisation we used only same identities.

a {}^{2} - b {}^{2} = (a + b)(a - b)

1. \\ \: \: 1 - 81y {}^{2} \\ (1) {}^{2} - (9y) {}^{2} \\ (1 - 9y)(1 + 9y)

2.<br />\\ \: \: \: 36 - 121y {}^{2} \\ (6) {}^{2} - (11y) {}^{2} \\ (6 - 11y)(6 + 11y)

3. \\ 121a {}^{2} - 64b {}^{2}c {}^{2} \\ (11a) {}^{2} - (8bc) {}^{2} \\ (11a - 8bc)(11a + 8bc)

4. \\ \: \: \: 81b {}^{2} 4 {}^{2} - 25p {}^{2} a {}^{2} \\ (9b \times 2) {}^{2} - (5pa) {}^{2} \\ (18b - 5pa)(18b + 5pa)

I hope it helps you

pranjal9316: hy
Similar questions