Math, asked by Padwal, 3 months ago

exponential form of Z= 1+i is =​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

We know,

The exponential form of a complex number is given by

 \sf \: z = r {e}^{i\theta\: } where

\rm :\longmapsto\: {e}^{i\theta}  = cos\theta \:  + i \: sin\theta

\rm :\longmapsto\:r \:  =  \: length \: of \: complex \: number

\rm :\longmapsto\:\theta \: is \: the \: argument \: of \: a \: complex \: number

Let's solve the problem now!!

Now,

  • Given complex number is 1 + i.

\rm :\longmapsto\:Let \: 1 + i =  r  {e}^{i\theta}  -  -  - (1)

\rm :\longmapsto\: \: 1 + i =  r (cos\theta \:  + i \: sin\theta)

\rm :\longmapsto\:1 + i =  r cos\theta \:  +  \: i \:  r  \: sin\theta

  • On comparing, we get

\rm :\longmapsto\: r cos\theta \:  =  \: 1 -  -  - (2)

and

\rm :\longmapsto\: r sin\theta \:  =  \: 1 -  -  - (3)

  • On squaring equation (1) and (2), and add we get

\rm :\longmapsto\: { r }^{2}  {cos}^{2} \theta \:  +  \:  { r }^{2}  {sin}^{2} \theta = 1 + 1

\rm :\longmapsto\: { r }^{2} ( {sin}^{2} \theta +  {cos}^{2} \theta) = 2

\rm :\longmapsto\: { r }^{2}  = 2 \:   \:  \:  \:  \:  \:  \: \{  \bf\because \:  {sin}^{2} \theta +  {cos}^{2} \theta = 1 \}

\bf\implies \: r  =  \sqrt{2}  -  - (4) \:  \: as \: r  \nless 0

On substituting the value from (4) to equation (3) and (2),

\rm :\longmapsto\:cos\theta = \dfrac{1}{ \sqrt{2} }  \:  \: and \:  \: sin\theta = \dfrac{1}{ \sqrt{2} }

 \sf \: as \: cos\theta > 0 \: and \: sin\theta > 0 \: it \: means \: \theta \in \:  {1}^{st}  \: quadrant

\bf\implies \:\theta \:  =  \: \dfrac{\pi}{4}  -  - (5)

Now,

  • Substituting the values from (4) and (5) in equation (1),

\bf\implies \:1 + i =   \sqrt{2}  \: {e} \: ^ {i\dfrac{\pi}{4} }

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

The exponential form of a complex number is extension of its polar form. We kmow that the polar form of a complex number z is:

\rm :\longmapsto\:z \:  =  \:  r cos\theta + i \: sin\theta \:  =  \:  r  \: cis \: \theta

Euler's Formula tells us that:

\rm :\longmapsto\: {e}^{i\theta}  = cos\theta \:  +  \: i \: sin\theta

Thus,

  • we can write

\rm :\longmapsto\:z \:  =  \: r \:  {e}^{i\theta}

Explore more :-

\rm :\longmapsto\: 1). \:  \: {e}^{ - i \: \theta}  = cos\theta \:  -  \: i \: sin\theta

\rm :\longmapsto\:2). \:  \: cos\theta \:  = \dfrac{ {e}^{i\theta \:} +  {e}^{ - i\theta}  }{2}

\rm :\longmapsto\:3). \:  \: sin\theta \:  = \dfrac{ {e}^{i\theta} -  {e}^{ - i\theta}  }{2i}

Similar questions