Math, asked by harsha2414, 1 year ago

Express 0.1 23 bar in p by Q form

Answers

Answered by SmallMiniDoraemon
15

SOLUTION :


Let x be 0.123232323........     (i)

Multiplying 10 both the sides we get,

10x = 1.23232323......    (ii)

Multiplying 100 both the sides of Eq.(ii) we get,

1000x = 123.23232323.....    (iii)


Now,

Subtracting Eq.(ii) from Eq.(iii) we get,


  1000x = 123.232323...

-       10x =     1.232323....

___________________

   990x = 122

___________________


So,

⇒ 990x = 122

⇒ x = \frac{ \bf 122 }{ \bf 990 }


∴ 0.123 (baron 23) =  \frac{ \bf 122 }{ \bf 990 }


harsha2414: wrong bar only for 23
SmallMiniDoraemon: ok
Answered by SomeoneVerySpecial
11
<b>Here is the answer to your question.
___________________
___________________

Let x be 0.123232323........     (i)


Multiplying 10 both the sides we get,


10x = 1.23232323......    (ii)


Multiplying 100 both the sides of Eq.(ii) we get,


1000x = 123.23232323.....    (iii)



Now,


Subtracting Eq.(ii) from Eq.(iii) we get,


  1000x = 123.232323...

-       10x =     1.232323....

___________________

   990x = 122

___________________


So,

=> 990x = 122

=> x = 122/990

Hence,

0.123 (baron 23) =  122/990

___________________
___________________

Hope it helped!!!
Similar questions