Express 0.32+0.35 as a fraction p/q simplest form
Answers
Step-by-step explanation:
Given non terminating repeating decimal 0.323232...
Letx=0.323232....----(1)
Multiplyequation(1)by100,
weget
=>100x=32.323232...---(2)
Subtractequation(1)fromequation(2),weget
=>99x=32
=>x=32/99[p/qform]
Therefore,
x=0.323232.....
=32/99[p/qfrom]
•••••
let y = 0.35 bar
y = 0.353535........ -------( 5 )
Multiply ( 5 ) with 100
100y = 35. 353535..... -----( 6 )
Subtract ( 5 ) from ( 6 )
99 y = 35
y = 35 / 99 ---------( 7 )
Now giben problem is
0. 32 bar + 0.35 bar
= x + y
= ( 3 ) + ( 7 )
= 32/ 99 + 35 / 99
= 0.67 bar
Answer:
Step-by-step explanation:
We know, 1. 32 =1+0. 32
=x+y (lets assume)
y=0. 32
⇒100y=32. 32
=32+0. 32
.100y=32+y
∴99y=32⇒y= 32 / 99
Similarity, 0. 35 = 35 / 99
∴1. 32 +0. 35 =(1+ 32 /99 )+ 35 / 99 = 99+32+35 / 99
=> 166 /99
p+q=166+95=265.