Math, asked by binitasharma1975, 1 year ago

Express 0.32+0.35 as a fraction p/q simplest form

Answers

Answered by letshelpothers9
5

Step-by-step explanation:

Given non terminating repeating decimal 0.323232...

Letx=0.323232....----(1)

Multiplyequation(1)by100,

weget

=>100x=32.323232...---(2)

Subtractequation(1)fromequation(2),weget

=>99x=32

=>x=32/99[p/qform]

Therefore,

x=0.323232.....

=32/99[p/qfrom]

•••••

let y = 0.35 bar

y = 0.353535........ -------( 5 )

Multiply ( 5 ) with 100

100y = 35. 353535..... -----( 6 )

Subtract ( 5 ) from ( 6 )

99 y = 35

y = 35 / 99 ---------( 7 )

Now giben problem is

0. 32 bar + 0.35 bar

= x + y

= ( 3 ) + ( 7 )

= 32/ 99 + 35 / 99

= 0.67 bar

Answered by gayathriiragavarapu
0

Answer:

Step-by-step explanation:

We know, 1. 32 =1+0. 32

=x+y         (lets assume)

y=0. 32

⇒100y=32. 32

=32+0. 32

 .100y=32+y

∴99y=32⇒y= 32 / 99

Similarity, 0. 35 = 35 / 99

∴1. 32 +0. 35 =(1+ 32 /99 )+ 35 / 99  = 99+32+35 / 99

=> 166 /99

p+q=166+95=265.

Similar questions