Math, asked by ravindarasingh209, 10 months ago

express 0.9999 in the form of p/q where p and q are integers 8 where q is not equal to 0​

Answers

Answered by cutie08
8

 \mathcal \red {REFER \: \: THE \: \: ATTACHMENT}

 \textbf \pink {HOPE IT HELPS} ❤️

 \textbf \blue {THNKX MY ANSWERS} ❤️

 \huge \green {Brainliest \: please} ✌️

Attachments:
Answered by Glorious31
9

Let us consider the rational as x

So accordingly the equation becomes :

\longrightarrow{\tt{x = 0.99999999....}} - (1)

Only 9 is being repeated

So the periodicity is 1

Now we have to take a number that has one zero after the digit 1

=> It is 10

So we will multiply both the sides with 10

We get another equation :

\longrightarrow{\tt{10x = 9.999999...}} -(2)

Now we will subtract (1) from (2)

\longrightarrow{\tt{ 10x - x = 9.9999...- 0.99999....}}

\longrightarrow{\tt{ 9x = 9}}

\large{\boxed{\tt{ x = \dfrac{9}{9}}}}

Similar questions