Math, asked by AtharvaKalbhor7061, 10 months ago

Express 1-1/1+root 3 + 1/1- root 3 in the form of a + b root 3

Answers

Answered by hukam0685
3

Step-by-step explanation:

Given:

1 -  \frac{1}{1 +  \sqrt{3} }  +  \frac{1}{1 -  \sqrt{3} }  \\

To find:

Express in the form of

a +  \sqrt{3} b \\

Solution:

First take LCM

 1 -  \frac{1}{1 +  \sqrt{3} }  +  \frac{1}{1 -  \sqrt{3} } \\\\=>\frac{(1 +  \sqrt{3})(1 -  \sqrt{3} ) - (  1 -  \sqrt{3} ) + 1 +  \sqrt{3} }{(1 +  \sqrt{3})(1 -  \sqrt{3} ) }   \\  \\=  >   \frac{(1 - ( { \sqrt{3})  }^{2} ) - (  1 -  \sqrt{3} ) + 1 +  \sqrt{3} }{(1 +  \sqrt{3})(1 -  \sqrt{3} ) }   \\  \\  \because \: (x - y)(x + y) =  {x}^{2}  -  {y}^{2}  \\  \\ =  >  \frac{1 - 3  -   1  +  \sqrt{3}  + 1 +  \sqrt{3} }{(1 +  \sqrt{3})(1 -  \sqrt{3} ) } \\  \\  =  >  \frac{ - 2  + 2 \sqrt{3} }{1 - ( { \sqrt{3} )}^{2} }  \\  \\    =  >  \frac{ - 2(1 -  \sqrt{3} )}{ - 2}  \\  \\  =  > 1 -  \sqrt{3}  \\  \\ a + b \sqrt{3}  = 1 -  \sqrt{3}  \\  \\

Thus,

1 -  \frac{1}{1 +  \sqrt{3} }  +  \frac{1}{1 -  \sqrt{3} }  \\  \\

can be expressed as

1 -  \sqrt{3}  \\  \\

in form of

a + b \sqrt{3}  \\

Hope it helps you.

To learn more on brainly:

1)Rationalise the denominator of : 5/√3-√5

https://brainly.in/question/2676020

2)Rationalise the denominator of 1/√5+√2.

https://brainly.in/question/3418255

Answered by charisma47
2

Answer:

can be expressed as 1-3

Similar questions