Math, asked by sssandy24rishipakp7n, 1 year ago

Express 1/1+cos theta -isin theta in the form of a+ib.

Answers

Answered by BEJOICE
60
See the attachment for detail solution
Hope it will help you
Attachments:
Answered by SerenaBochenek
20

Answer:

\frac{1}{1+\cos \theta-i\sin \theta}=\frac{1+\cos \theta}{(1+\cos \theta)^2+(\sin \theta)^2}+i\frac{\sin \theta}{(1+\cos \theta)^2+(\sin \theta)^2}

a=\frac{1+\cos \theta}{(1+\cos \theta)^2+(\sin \theta)^2}

b=\frac{\sin \theta}{(1+\cos \theta)^2+(\sin \theta)^2}

Step-by-step explanation:

Given the expression

\frac{1}{1+\cos \theta-i\sin \theta}

we have to express the above in the form a+ib

\frac{1}{1+\cos \theta-i\sin \theta}

By rationalizing

\frac{1}{(1+\cos \theta)-i\sin \theta}\times \frac{(1+\cos \theta)+i\sin \theta}{(1+\cos \theta)+i\sin \theta}

=\frac{(1+\cos \theta)+i\sin \theta}{(1+\cos \theta)^2-(i\sin \theta)^2}

=\frac{(1+\cos \theta)+i\sin \theta}{(1+\cos \theta)^2-i^2(\sin \theta)^2}

=\frac{(1+\cos \theta)+i\sin \theta}{(1+\cos \theta)^2+(\sin \theta)^2}

=\frac{1+\cos \theta}{(1+\cos \theta)^2+(\sin \theta)^2}+i\frac{\sin \theta}{(1+\cos \theta)^2+(\sin \theta)^2}

which is required form where

a=\frac{1+\cos \theta}{(1+\cos \theta)^2+(\sin \theta)^2}

b=\frac{\sin \theta}{(1+\cos \theta)^2+(\sin \theta)^2}

Similar questions