Math, asked by eetakotikarthik, 2 days ago

express[1 2 and 3 4] as the sum of symmetric and skew symmetric matrix​

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{\left(\begin{array}{cc}1&2\\3&4\end{array}\right)}

\underline{\textbf{To find:}}

\mathsf{Express\;\left(\begin{array}{cc}1&2\\3&4\end{array}\right)\;as\;sum\;of\;}

\textsf{symmetric and skew symmetric matrix}

\underline{\textbf{Solution:}}

\mathsf{Let\;A=\left(\begin{array}{cc}1&2\\3&4\end{array}\right)}

\mathsf{Consider,}

\mathsf{P=\dfrac{1}{2}(A+A^T)}

\mathsf{P=\dfrac{1}{2}\left[\left(\begin{array}{cc}1&2\\3&4\end{array}\right)+\left(\begin{array}{cc}1&3\\2&4\end{array}\right)\right]}

\mathsf{P=\dfrac{1}{2}\left(\begin{array}{cc}2&5\\5&8\end{array}\right)}

\mathsf{P^T=\dfrac{1}{2}\left(\begin{array}{cc}2&5\\5&8\end{array}\right)}

\mathsf{P^T=P}

\implies\textsf{P is symmetric}

\mathsf{Q=\dfrac{1}{2}(A-A^T)}

\mathsf{Q=\dfrac{1}{2}\left[\left(\begin{array}{cc}1&2\\3&4\end{array}\right)-\left(\begin{array}{cc}1&3\\2&4\end{array}\right)\right]}

\mathsf{Q=\dfrac{1}{2}\left(\begin{array}{cc}0&-1\\1&0\end{array}\right)}

\mathsf{Q^T=\dfrac{1}{2}\left(\begin{array}{cc}0&1\\-1&0\end{array}\right)}

\mathsf{Q^T=-\dfrac{1}{2}\left(\begin{array}{cc}0&-1\\1&0\end{array}\right)}

\mathsf{Q^T=-Q}

\implies\textsf{Q is skew symmetric}

\mathsf{Now,}

\mathsf{P+Q}

\mathsf{=\dfrac{1}{2}\left(\begin{array}{cc}2&5\\5&8\end{array}\right)+\dfrac{1}{2}\left(\begin{array}{cc}0&-1\\1&0\end{array}\right)}

\mathsf{=\dfrac{1}{2}\left(\begin{array}{cc}2&4\\6&8\end{array}\right)}

\mathsf{=\left(\begin{array}{cc}1&2\\3&4\end{array}\right)}

\implies\mathsf{\left(\begin{array}{cc}1&2\\3&4\end{array}\right)=P+Q}

\implies\boxed{\mathsf{\left(\begin{array}{cc}1&2\\3&4\end{array}\right)=Symmetric\;matrix+Skew\;symmetric\;matrix}}

Similar questions