Express[1+2i] divied by[1-2i] in polar form
Answers
Answered by
0
Answer:
Answer:
\sqrt{2}e^{i\frac{3\pi}{4}}
2
e
i
4
3π
Step-by-step explanation:
The given equation is:
{\frac{1+3i}{1-2i}
We have to convert the given equation in the polar form, thus
={\frac{1+3i}{1-2i}{\times}\frac{1+2i}{1+2i}}
1−2i
1+3i
×
1+2i
1+2i
={\frac{1+5i-6}{1+4}}
1+4
1+5i−6
={\frac{-5+5i}{5}}
5
−5+5i
=-1+i−1+i
={\sqrt{2}{\times}{\frac{1}{\sqrt{2}}(-1+i)
=\sqrt{2}(\frac{-1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i)
2
(
2
−1
+
2
1
i)
=\sqrt{2}(cos({\pi}-{\frac{\pi}{4})+isin({\pi}-{\frac{\pi}{4}))
=\sqrt{2}(cos{\frac{3\pi}{4}+isin{\frac{3\pi}{4})
=\sqrt{2}e^{i\frac{3\pi}{4}}
2
e
i
4
3π
which is the required polar form.
Similar questions