Math, asked by sinchu250, 1 year ago

express 1+3i/1-2i in the form of a+ib ​

Answers

Answered by Anonymous
36

Here Is Your Ans ⤵

*****

  \to\frac{1 + 3i}{1 - 2i}  \\  \\  \to \frac{(1 + 3i)(1 + 2i)}{(1 - 2i)(1 + 2i)}  \\  \\ \to\frac{1 + 2i + 3i + 6 {i}^{2} }{ {1}^{2}  -  {(2i)}^{2} }  \\  \\  \to \frac{1 + 5i + 6 \times ( - 1)}{1 - 2 \times ( - 1)}  \\   \\  \to \frac{1 + 5i - 6}{1 + 2}  \\  \\ \to  \frac{ - 5 + 5i}{3}  \\  \\  \to \frac{ - 5}{3}  +  \frac{5i}{3}  \:

Answered by talasilavijaya
0

Answer:

\frac{ 1+3i}{1-2i } in the form of with a+ib can be written as 5-i where a=5 & b=-1

Step-by-step explanation:

Given the expression with complex numbers, \frac{ 1+3i}{1-2i }

Dividing and multiplying the above expression with 1+2i,

\frac{ (1+3i)(1+2i)}{(1-2i) (1+2i)}

Opening the brackets by multiplying the terms,

=\frac{1\times 1+1\times3i+2i\times 1+2i\times3i}{1\times 1+1\times2i+1\times (-21)+2i\times(-2i)}

=\frac{1+3i+2i+6i^{2} }{1+2i -2i-4i^{2} }

=\frac{1+5i+6i^{2} }{1-4i^{2} }

Using the value of i^{2} =-1

=\frac{1+5i+6(-1) }{1-4(-1) }

=\frac{1+5i-6 }{1+4}

=\frac{5i-5 }{5}

=5-i

Comparing with a+ib, we have a=5 and b=-1.

Similar questions