Math, asked by Bhavdeep02, 1 year ago

express 1+cos(alpha)+isin(alpha) in modulus amplitude form

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{1+cos\,\alpha+i\,sin\,\alpha}

\underline{\textbf{To find:}}

\textsf{Modulus amplitude form of}

\mathsf{1+cos\,\alpha+i\,sin\,\alpha}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\textsf{Modulus amplitude form of a complex number z is}

\mathsf{z=r\,[cos\,\theta+i\,sin\theta]}

\mathsf{Consider,}

\mathsf{1+cos\,\alpha+i\,sin\,\alpha}

\textsf{using the identities,}

\boxed{\begin{minipage}{4cm}$\\cosA=2\,cos^2\frac{A}{2}-1\\\\sin\,A=2\,sin\frac{A}{2}\;cos\frac{A}{2}\\$\end{minipage}}

\mathsf{=2\,cos^2\dfrac{\alpha}{2}+i\,2\,sin\dfrac{\alpha}{2}\,cos\dfrac{\alpha}{2}}

\mathsf{=2\,cos\dfrac{\alpha}{2}\,\left[cos\dfrac{\alpha}{2}+i\,sin\dfrac{\alpha}{2}\right]}

\implies

\mathsf{Modulus\;of\;1+cos\,\alpha+i\,sin\,\alpha=2\,cos\dfrac{\alpha}{2}}

\mathsf{Amplitude\;of\;1+cos\,\alpha+i\,sin\,\alpha=\dfrac{\alpha}{2}}

Similar questions