express (1-i^3/1+i^3) ^2 in the form of a+ib
Answers
Answer:
step by step explanation:
given expression (1-i^3/1+i^3)^2
first we solve (1+i^3/1-i^3)
by using (a+b)^3=a^3+b^3+3ab(a+b) and
(a-b)^3=a^3-b^3-3ab(a-b)
(1+i^3)=1+i^3+3i(1+i)=1+i^2*i+3i+3i^2=1+(-1)i+3i+3(-1)
=1-i+3i-3=-2+2i=-2(1-i) [here i^2=-1]
similarly
(1-i^3)=-2(1+i)
now (1-i^3/1+i^3)^2=(-2(1+i)/-2(1-i))^2
=(1+i/1-i)^2
by using (a+b)^2=a^2+b^2+2ab
(a-b)^2=a^2+b^2-2ab
(1+i/1-i)^2=1+i^2+2i/1+i^2-2i
=1+(-1)+2i/1+(-1)-2i
=1-1+2i/1-1-2i
=2i/-2i
=-1
finally a+ib form of given expression is -1+0i
here a=-1,b= 0 & a is real part,b is imaginary part.
Answer:
your solution is as follows
pls mark it as brainliest
Step-by-step explanation: