Math, asked by dey29020, 3 months ago

express 1+i✓3 in the modulus amplitude form.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:1 +  \sqrt{3} \: i

We know,

Modulus amplitude form is

\rm :\longmapsto\:z = r(cos\theta  + i \: sin\theta )

where,.

  • r is Modulus of complex number

  • θ is argument of complex number

Let assume that

\rm :\longmapsto\:1 + i \sqrt{3}  = r(cos\theta  + i \: sin\theta ) -  -  - (1)

\rm :\longmapsto\:1 + i \sqrt{3}  = rcos\theta  + i \: rsin\theta

On comparing we get

\rm :\longmapsto\:rcos\theta  = 1 -  -  - (2)

and

\rm :\longmapsto\:rsin\theta  =  \sqrt{3}  -  -  - (3)

On squaring equation (2) and (3), we get

\rm :\longmapsto\: {r}^{2} {cos}^{2} \theta  = 1 -  -  - (4)

and

\rm :\longmapsto\: {r}^{2} {sin}^{2} \theta  = 3 -  -  - (5)

On adding equation (4) and (5), we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta  +    {r}^{2} {sin}^{2} \theta  = 1 + 3

\rm :\longmapsto\: {r}^{2} ({cos}^{2}\theta +{sin}^{2} \theta ) = 4

\rm :\longmapsto\: {r}^{2}  = 4

\bf\implies \:r = 2 \:  \:  \: as \: r > 0

On substituting the value of r in equation (2) and (3),

\rm :\longmapsto\:cosθ =  \dfrac{1}{2}

and

\rm :\longmapsto\:sinθ =  \dfrac{ \sqrt{3} }{2}

As sinθ > 0 and cosθ > 0

\bf\implies \:\theta  \: lies \: in \:  {1}^{st}  \: quadrant

\bf\implies \:\theta  = \dfrac{\pi}{3}

On substituting the value of r and θ in equation (1), we get

\bf :\longmapsto\:1 + i \sqrt{3}  = 2 \bigg(cos \dfrac{\pi}{3}  + i \: sin\dfrac{\pi}{3} \bigg )

Additional Information :-

The argument of complex number is

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\sf Re(z)&\sf \: Im(z)&\sf \:arg(z)\\\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}\\\sf > 0&\sf > 0&\sf\theta \\\\\sf < 0&\sf > 0&\sf\pi - \theta \\\\\sf < 0 &\sf < 0&\sf\ - \pi + \theta \\\\\sf > 0&\sf < 0&\sf - \theta \\\\ \frac{\qquad}{}&\frac{\qquad}{}&\frac{\qquad \qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}

Similar questions