Math, asked by chinnasamyrajan8067, 2 days ago

express (-1-i)^-30 in the form of a + ib

Answers

Answered by mathdude500
2

 \green{\large\underline{\sf{Solution-}}}

Given complex number is

\rm :\longmapsto\: {( - 1 - i)}^{ - 30}

\rm \:  =  \: \dfrac{1}{ {( - 1 - i)}^{30} }

\rm \:  =  \: \dfrac{1}{ {( - [1 + i])}^{30} }

\rm \:  =  \: \dfrac{1}{ {[1 + i]}^{30} }

\rm \:  =  \: \dfrac{1}{ {[ {(1 + i)}^{2} ]}^{15} }

\rm \:  =  \: \dfrac{1}{ {(1 +  {i}^{2}  + 2i)}^{15} }

\rm \:  =  \: \dfrac{1}{ {(1  - 1  + 2i)}^{15} }  \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {i}^{2} =  - 1 \}

\rm \:  =  \: \dfrac{1}{ {(2i)}^{15} }  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \: \dfrac{1}{ {2}^{15} {(i)}^{15} }  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \: \dfrac{1}{ {2}^{15} {(i)}^{14}  \times i}  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \: \dfrac{1}{ {2}^{15} {( {i}^{2} )}^{7}  \times i}  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \: \dfrac{1}{ {2}^{15} {(  - 1 )}^{7}  \times i}  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \:  -  \: \dfrac{1}{ {2}^{15} i}  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \:  -  \: \dfrac{1}{ {2}^{15} i}  \times \dfrac{i}{i}  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \:  -  \: \dfrac{i}{ {2}^{15}  {i}^{2} }

\rm \:  =  \:  -  \: \dfrac{i}{ {2}^{15}( - 1)}

\rm \:  =  \: \: \dfrac{i}{ {2}^{15}}

Hence,

\rm \implies\:\boxed{\tt{  {( - 1 - i)}^{ - 30} =0 +   \frac{i}{ {2}^{15} } \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions