Math, asked by jatinrai6449, 8 hours ago

Express –1–i in polar form with principle value of the amplitude

Answers

Answered by suhail2070
1

Answer:

z= \sqrt{2} ( \cos( \frac{3\pi}{4} )   - i \sin( \frac{3\pi}{4} ) ).

Step-by-step explanation:

z =  - 1 - i \\  \\  |z|  =  \sqrt{ {1}^{2}  +  {1}^{2} }  =  \sqrt{2}  \\  \\  \alpha  =   \frac{\pi}{4}  - \pi \\  \\  =  -  \frac{3\pi}{4}  \\  \\ therefore \:  \:  \:  \:  \: z =  \sqrt{2} ( \cos( -  \frac{3\pi}{4} )  + i \sin( \frac{ - 3\pi}{4} ) ) \\  \\  \\  \\   z= \sqrt{2} ( \cos( \frac{3\pi}{4} )   - i \sin( \frac{3\pi}{4} ) ).

Similar questions