Express 101010100₂ to denary
Answers
Answered by
2
Answer:
Real part = \dfrac{2\cos x\cos hy}{\cos 2x+\cosh 2y}
cos2x+cosh2y
2cosxcoshy
and Imaginary part = \dfrac{2\sin x\sin hy}{\cos 2x+\cosh 2y}
cos2x+cosh2y
2sinxsinhy
Step-by-step explanation:
We have,
\sec(x+iy)sec(x+iy)
To separate the real and imaginary part of \sec(x+iy)sec(x+iy) = ?
∴ \sec(x+iy)sec(x+iy)
=\dfrac{1}{\cos(x+iy)}=
cos(x+iy)
1
Rationalising numerator and denominator, we get
=\dfrac{1}{2\cos(x+iy)}\times \dfrac{2\cos(x-iy)}{\cos(x-iy)}=
2cos(x+iy)
1
×
cos(x−iy)
2cos(x−iy)
=\dfrac{2(\cos x\cos iy+\sin x\sin iy)}{\cos 2x+\cos 2iy}=
cos2x+cos2iy
2(cosxcosiy+sinxsiniy)
Using the trigonometric identity,
\cos (A-B)=\cos A\cos B+\sin A\sin Bcos(A−B)=cosAcosB+sinAsinB
=\dfrac{2(\cos x\cos hy+i\sin x\sin hy)}{\cos 2x+\cosh 2y}
Similar questions
Chemistry,
8 days ago
English,
8 days ago
Social Sciences,
8 days ago
Math,
9 months ago
Science,
9 months ago