Express 2+1/(1+i)(1-2i) in the polar form
Answers
Answer:
Question is,
\begin{gathered}z = \frac{1 - 2i}{1 - {(1 - i)}^{2} } \\ to \: find \: the \: polar \: form \: it \: is \: necessary \: to \: convert \: it \: into \: standerd \: form \\ z = \frac{1 - 2i}{1 - (1 + {i}^{2} - 2i)} \\ z = \frac{1 - 2i}{1 + 2i} \\ on \: rationalising \\ z = \frac{1 - 2i}{1 + 2i} \times \frac{1 - 2i}{1 - 2i} \\and \: on \: solving \\ z = \frac{ - 3}{5} - \frac{4i}{5} \\ \end{gathered}
z=
1−(1−i)
2
1−2i
tofindthepolarformitisnecessarytoconvertitintostanderdform
z=
1−(1+i
2
−2i)
1−2i
z=
1+2i
1−2i
onrationalising
z=
1+2i
1−2i
×
1−2i
1−2i
andonsolving
z=
5
−3
−
5
4i
from here we can note that,
x = \frac{ - 3}{5} \: and \: y = \frac{ - 4}{5}x=
5
−3
andy=
5
−4
then,
\begin{gathered} { |z| }^{2} = {r}^{2} = {( \frac{ - 3}{5} )}^{2} + {( \frac{ - 4}{5} )}^{2} \\ so \: |z| = r = 1\end{gathered}
∣z∣
2
=r
2
=(
5
−3
)
2
+(
5
−4
)
2
so∣z∣=r=1
we know that,
\begin{gathered} \tan( \alpha ) = | \frac{imaginary}{real} | \\ on \: putting \: value \\ \tan( \alpha ) = | \frac{ \frac{ - 4}{5} }{ \frac{ - 3}{5} } | \\ \tan( \alpha ) = \frac{4}{3} \\ also \: \sin( \alpha ) = \frac{4}{5} \\ \: \: \: \ \: \: \: \: \: cos( \alpha ) = \frac{3}{5} \end{gathered}
tan(α)=∣
real
imaginary
∣
onputtingvalue
tan(α)=∣
5
−3
5
−4
∣
tan(α)=
3
4
alsosin(α)=
5
4
cos(α)=
5
3
on putting these value in the form,
\begin{gathered}z = r(\cos( \alpha ) + i \sin( \alpha ) ) \\ \: z = 1( \ \ - cos( { \tan }^{ - 1} \frac{4}{3} ) + ( - i \sin( { \tan }^{ - 1} \frac{4}{3} )) \\ finally \\ z = ( - \cos( { \tan }^{ - 1} \frac{4}{3} ) - i \sin( { \tan }^{ - 1} \frac{4}{3} )\end{gathered}
z=r(cos(α)+isin(α))
z=1( −cos(tan
−1
3
4
)+(−isin(tan
−1
3
4
))
finally
z=(−cos(tan
−1
3
4
)−isin(tan
−1
3
4
)
thank you