Math, asked by khushipr10, 1 month ago

Express -2/7 as a rational number with 10

Answers

Answered by XxitsmrseenuxX
21

Answer:

\large\underline{\sf{Solution-}}

Given linear equation is

 \red{\rm :\longmapsto\:2x + y = 6}

Substituting 'x = 0' in the given equation, we get

 \red{\rm :\longmapsto\:2(0) + y = 6}

 \red{\rm :\longmapsto\:0 + y = 6}

 \red{\rm :\longmapsto\:y = 6}

Substituting 'x = 1' in the given equation, we get

 \green{\rm :\longmapsto\:2(1) + y = 6}

 \green{\rm :\longmapsto\:2 + y = 6}

 \green{\rm :\longmapsto\: y = 6 - 2}

 \green{\rm :\longmapsto\: y = 4}

Substituting 'x = 3' in the given equation, we get

 \blue{\rm :\longmapsto\:2(3) + y = 6}

 \blue{\rm :\longmapsto\:6 + y = 6}

 \blue{\rm :\longmapsto\: y = 6 - 6}

 \blue{\rm :\longmapsto\: y = 0}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 1 & \sf 4 \\ \\ \sf 3 & \sf 0 \end{array}} \\ \end{gathered}}

➢ Now draw a graph using the points (0 , 6), (1 , 4) & (3 , 0)

➢ See the attachment graph.

Answered by MichhDramebaz
4

Answer:

Solution−

Given linear equation is

\red{\rm :\longmapsto\:2x + y = 6}:⟼2x+y=6

Substituting 'x = 0' in the given equation, we get

\red{\rm :\longmapsto\:2(0) + y = 6}:⟼2(0)+y=6

\red{\rm :\longmapsto\:0 + y = 6}:⟼0+y=6

\red{\rm :\longmapsto\:y = 6}:⟼y=6

Substituting 'x = 1' in the given equation, we get

\green{\rm :\longmapsto\:2(1) + y = 6}:⟼2(1)+y=6

\green{\rm :\longmapsto\:2 + y = 6}:⟼2+y=6

\green{\rm :\longmapsto\: y = 6 - 2}:⟼y=6−2

\green{\rm :\longmapsto\: y = 4}:⟼y=4

Substituting 'x = 3' in the given equation, we get

\blue{\rm :\longmapsto\:2(3) + y = 6}:⟼2(3)+y=6

\blue{\rm :\longmapsto\:6 + y = 6}:⟼6+y=6

\blue{\rm :\longmapsto\: y = 6 - 6}:⟼y=6−6

\blue{\rm :\longmapsto\: y = 0}:⟼y=0

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered} \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 1 & \sf 4 \\ \\ \sf 3 & \sf 0 \end{array}} \\ \end{gathered}}\end{gathered}

x

0

1

3

y

6

4

0

➢ Now draw a graph using the points (0 , 6), (1 , 4) & (3 , 0)

➢ See the attachment graph.

Similar questions