Express -2/7 as a rational number with 10
Answers
Answer:
Given linear equation is
Substituting 'x = 0' in the given equation, we get
Substituting 'x = 1' in the given equation, we get
Substituting 'x = 3' in the given equation, we get
Hᴇɴᴄᴇ,
➢ Pair of points of the given equation are shown in the below table.
➢ Now draw a graph using the points (0 , 6), (1 , 4) & (3 , 0)
➢ See the attachment graph.
Answer:
Solution−
Given linear equation is
\red{\rm :\longmapsto\:2x + y = 6}:⟼2x+y=6
Substituting 'x = 0' in the given equation, we get
\red{\rm :\longmapsto\:2(0) + y = 6}:⟼2(0)+y=6
\red{\rm :\longmapsto\:0 + y = 6}:⟼0+y=6
\red{\rm :\longmapsto\:y = 6}:⟼y=6
Substituting 'x = 1' in the given equation, we get
\green{\rm :\longmapsto\:2(1) + y = 6}:⟼2(1)+y=6
\green{\rm :\longmapsto\:2 + y = 6}:⟼2+y=6
\green{\rm :\longmapsto\: y = 6 - 2}:⟼y=6−2
\green{\rm :\longmapsto\: y = 4}:⟼y=4
Substituting 'x = 3' in the given equation, we get
\blue{\rm :\longmapsto\:2(3) + y = 6}:⟼2(3)+y=6
\blue{\rm :\longmapsto\:6 + y = 6}:⟼6+y=6
\blue{\rm :\longmapsto\: y = 6 - 6}:⟼y=6−6
\blue{\rm :\longmapsto\: y = 0}:⟼y=0
Hᴇɴᴄᴇ,
➢ Pair of points of the given equation are shown in the below table.
\begin{gathered} \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 1 & \sf 4 \\ \\ \sf 3 & \sf 0 \end{array}} \\ \end{gathered}}\end{gathered}
x
0
1
3
y
6
4
0
➢ Now draw a graph using the points (0 , 6), (1 , 4) & (3 , 0)
➢ See the attachment graph.