Math, asked by vaisakhmenon, 3 months ago

express (2+i) /(2-i) in the form a+ib​

Answers

Answered by SparklingBoy
5

To Express

 \dfrac{2 + i}{2 - i}

in a simple complex number form

i.e.

a + ib

we have to rationalize it

As

 \dfrac{2 +i }{2 - i}  \\  \\  =\dfrac{2 +i }{2 - i} \times  \dfrac{2 +i }{2  + i} \\  \\  =  \dfrac{(2 +i ) {}^{2} }{(2 - i)(2 + i)} \\  \\  =  \frac{2 {}^{2} +  {i}^{2}   + 4i}{ {2}^{2}  -  {i}^{2}  }  \\  \\  =  \frac{4 - 1 + 4i}{ 4 + 1} \:  \:  \:  \:  \:  \:  \: ( \because \:  {i}^{2}  =  - 1) \\  \\  =  \frac{3 + 4i}{5 }  \\  \\  =  \frac{3}{5}  +  \frac{4}{5} i

Which is in the form

a  + ib

Where

a =  \dfrac{3}{5}

And

b =  \dfrac{4}{5}

Answered by Anonymous
3

Rationalise the given form (denominator) to get the required form.

as shown below in the solution.

 \dfrac{2 +i }{2 - i}  \\  \\  =\dfrac{2 +i }{2 - i} \times  \dfrac{2 +i }{2  + i} \\  \\  =  \dfrac{(2 +i ) {}^{2} }{(2 - i)(2 + i)} \\  \\  =  \frac{2 {}^{2} +  {i}^{2}   + 4i}{ {2}^{2}  -  {i}^{2}  }  \\  \\  =  \frac{4 - 1 + 4i}{ 4 + 1} \\  \\  =  \frac{3 + 4i}{5 }  \\  \\  =  \frac{3}{5}  +  \frac{4}{5} i

Now it is in the required form

Similar questions