Math, asked by TheGrims, 10 months ago

express 21/3√5+√3 with rational denominator​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{\dfrac{21}{3\sqrt{5}+\sqrt{3}}}

\textbf{To express:}

\mathsf{\dfrac{21}{3\sqrt{5}+\sqrt{3}}\;with\;rational\;denominator}

\textbf{Solution:}

\mathsf{Here,\;we\;have\;to\;rationalise\;the\;denominator\;of\;\dfrac{21}{3\sqrt{5}-\sqrt{3}}}

\mathsf{To\;rationalize\;the\;denominator\;multiply\;both\;numerator}

\mathsf{and\;denominator\;by\;3\sqrt{5}-\sqrt{3}}

\mathsf{\dfrac{21}{3\sqrt{5}+\sqrt{3}}{\times}\dfrac{3\sqrt{5}-\sqrt{3}}{3\sqrt{5}-\sqrt{3}}}

\mathsf{=\dfrac{21(3\sqrt{5}-\sqrt{3})}{(3\sqrt{5}+\sqrt{3})(3\sqrt{5}-\sqrt{3})}}

\mathsf{Using\;identity\bf\;(a-b)(a+b)=a^2-b^2}

\mathsf{=\dfrac{21(3\sqrt{5}-\sqrt{3})}{3^2(\sqrt{5})^2-(\sqrt{3})^2}}

\mathsf{=\dfrac{21(3\sqrt{5}-\sqrt{3})}{9(5)-3}}

\mathsf{=\dfrac{21(3\sqrt{5}-\sqrt{3})}{45-3}}

\mathsf{=\dfrac{21(3\sqrt{5}-\sqrt{3})}{42}}

\mathsf{=\dfrac{3\sqrt{5}-\sqrt{3}}{2}}\;\textsf{which is having rational denominator}

\implies\boxed{\mathsf{\dfrac{21}{3\sqrt{5}+\sqrt{3}}=\dfrac{3\sqrt{5}-\sqrt{3}}{2}}}

\textbf{Find more:}}

√7 - 2/√7 + 2 = a√7 + b

https://brainly.in/question/1115376

If x = √7+ √3 and xy = 4, then x4 + y4 =​

https://brainly.in/question/16537214

17/3√2+1 rationalise the denominator

https://brainly.in/question/7645037

Similar questions