Math, asked by tahir3278, 11 months ago

Express 21 by 3√5+√3 with Rationalising denomination

Answers

Answered by ksonakshi70
23

Answer:

 \frac{21}{3 \sqrt{5}  +  \sqrt{3} }  =  \frac{21}{3 \sqrt{5} +  \sqrt{3}  }  \times  \frac{3 \sqrt{5}  -  \sqrt{3} }{3 \sqrt{5} -  \sqrt{3}  }  \\  \:  \:  \:  = \frac{21(3 \sqrt{5}  -  \sqrt{3} )}{(3 \sqrt{5}) {}^{2}  - ( \sqrt{3}) {}^{2}   }  \\  \:  \:  \:  =  \frac{63 \sqrt{5}  - 21 \sqrt{3} }{45 - 3}  \\  \:  \:  \:  =  \frac{63 \sqrt{5}  - 21 \sqrt{3} }{42}

Answered by MsPRENCY
21

Answer :

\sf \dfrac{2\sqrt{5}-\sqrt{3}}{2}

Solution :

\sf \dfrac{21}{3\sqrt{5} + \sqrt{3}}

\sf = \dfrac{21}{3\sqrt{5}+\sqrt{3}} \times \dfrac{3\sqrt{5}-\sqrt{3}}{3\sqrt{5}-\sqrt{3}}

∵ a² - b² = ( a + b ) ( a - b )

\sf = \dfrac{21(3\sqrt{5}-\sqrt{3})}{(3\sqrt{5})^2 - (\sqrt{3})^2}

\sf = \dfrac{63\sqrt{5}-21\sqrt{3}}{45-3}

\sf = \dfrac{21(2\sqrt{5}-\sqrt{3})}{42}

\sf = \dfrac{7(2\sqrt{5}-\sqrt{3})}{14}

Answer : \sf = \dfrac{2\sqrt{5}-\sqrt{3}}{2}

\rule{200}2

Similar questions