Math, asked by crazyslayer61, 10 months ago

express ³√x^7 y^5 in index form​

Answers

Answered by mysticd
0

 Given \: \sqrt[3] { x^{7} y^{5} }

 = \Big( x^{7} y^{5} \Big)^{\frac{1}{3} }

 = \Big( x^{7}\Big)^{\frac{1}{3}} \times \Big(  y^{5} \Big)^{\frac{1}{3}}

 = x^{\frac{7}{3}} y^{\frac{5}{3}}

/* By Exponential Law */

 \boxed{ \pink{ (ab)^{n} = a^{n} \times b^{n} }}

Therefore.,

 \red{Index \:form \:of \:\sqrt[3] { x^{7} y^{5} }}

 \green {= x^{\frac{7}{3}} y^{\frac{5}{3}} }

•••♪

Answered by Anonymous
0

 \huge \underline{answer} \\  \sf \implies \:  \sqrt[3]{ {x}^{7}  {y}^{5} }  \\  \\ \sf \implies \: ( {x}^{7}  {y}^{5} ) ^{ \frac{1}{3} }  \\  \\ \sf \implies \:  ({x}^{7} ) ^{ \frac{1}{3} } ( {y}^{5} ) ^{ \frac{1}{3} }  \\  \\ \sf \implies \:(  {x}^{ \frac{7}{3} } )( {y}^{ \frac{5}{3} } )

Similar questions