Math, asked by rianbhaijaan, 4 months ago

express (4^-3) in power notation,with base 2
CLASS-8​
PLEASE HELP

Answers

Answered by Yuseong
3

Required Answer:

Solution:

 \sf { \longrightarrow ({4}^{-3})}

 \sf { \longrightarrow ({2 \times 2}^{-3})}

 \sf { \longrightarrow ({{2}^{2}}^{-3})}

 \sf { \longrightarrow [{2}^{2 \times (-3)}]}

[Since, \sf{ {{a}^{b}}^{c}= {a}^{b \times c} }

 \sf\purple { \longrightarrow {2}^{-6}}

__________________________

How did I solve this?

Here, as per the given question, we have to express  \sf { ({4}^{-3})} in power notation, with the base 2.

So, firstly we will break the given base (4) into number. We can write 4 as 2 × 2.

 \sf { \longrightarrow {4}^{-3} = {(2 \times 2)}^{-3}}

Also we can write 2 × 2 as 2².

 \sf { \longrightarrow {4}^{-3} = {({2}^{2})}^{-3}}

Now, by using one of the laws of exponents , that is,

  •  \sf { {({a}^{b})}^{c} = {a}^{b \times c}}

 \sf { \longrightarrow [{2}^{2 \times (-3)}]}

Now , performing multiplication:

 \sf\purple { \longrightarrow {2}^{-6}} .

So, the answer is  \sf { {2}^{-6}} .

_______________________________

Extra:

Laws of exponents:

  •  \sf { {a}^{0} = 1}

  •  \sf { {a}^{m} \times {a}^{n} = {a}^{m+n} }

  •  \sf { {a}^{m} \times {b}^{m} = {(ab)}^{m} }

  •  \sf { {a}^{-m} = \dfrac{1}{{a}^{m}} }

  •  \sf { \dfrac{{a}^{m}}{{a}^{n}} = {a}^{m-n} }

_______________________________

Similar questions