Math, asked by ranjanajhadar4287, 9 months ago

Express [7 3 −5 0 1 5 −2 7 3]as the sum of a symmetric and a skew symmetric matrix.

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{\left(\begin{array}{ccc}7&3&-5\\0&1&5\\-2&7&3\end{array}\right)}

\underline{\textbf{To find:}}

\mathsf{\left(\begin{array}{ccc}7&3&-5\\0&1&5\\-2&7&3\end{array}\right)\;as\;the\;sum\;of\;a\;}

\textsf{symmetric and skew symmetric matrix}

\underline{\textbf{Solution:}}

\mathsf{A=\left(\begin{array}{ccc}7&3&-5\\0&1&5\\-2&7&3\end{array}\right)}

\mathsf{consider,\;P=\dfrac{1}{2}(A+A^T)}

\implies\mathsf{P=\dfrac{1}{2}\left[\left(\begin{array}{ccc}7&3&-5\\0&1&5\\-2&7&3\end{array}\right)+\left(\begin{array}{ccc}7&0&-2\\3&1&7\\-5&5&3\end{array}\right)\right]}

\implies\mathsf{P=\dfrac{1}{2}\left(\begin{array}{ccc}7+7&3+0&-5-2\\0+3&1+1&5+7\\-2-5&7+5&3+3\end{array}\right)}

\implies\mathsf{P=\dfrac{1}{2}\left(\begin{array}{ccc}14&3&-7\\3&2&12\\-7&12&6\end{array}\right)}

\mathsf{Clearly,\;P=P^T}

\implies\mathsf{P\;is\;a\;symmetric\;matrix}

\mathsf{consider,\;Q=\dfrac{1}{2}(A-A^T)}

\implies\mathsf{Q=\dfrac{1}{2}\left[\left(\begin{array}{ccc}7&3&-5\\0&1&5\\-2&7&3\end{array}\right)-\left(\begin{array}{ccc}7&0&-2\\3&1&7\\-5&5&3\end{array}\right)\right]}

\implies\mathsf{Q=\dfrac{1}{2}\left(\begin{array}{ccc}7-7&3-0&-5+2\\0-3&1-1&5-7\\-2+5&7-5&3-3\end{array}\right)}

\implies\mathsf{Q=\dfrac{1}{2}\left(\begin{array}{ccc}0&3&-3\\-3&0&-2\\3&2&0\end{array}\right)}

\mathsf{clearly,\;Q=-Q^T}

\implies\textsf{Q is a skew symmetric matrix}

\mathsf{Now,}

\mathsf{P+Q}

\mathsf{=\dfrac{1}{2}\left(\begin{array}{ccc}14&3&-7\\3&2&12\\-7&12&6\end{array}\right)+\dfrac{1}{2}\left(\begin{array}{ccc}0&3&-3\\-3&0&-2\\3&2&0\end{array}\right)}

\mathsf{=\dfrac{1}{2}\left[\left(\begin{array}{ccc}14&3&-7\\3&2&12\\-7&12&6\end{array}\right)+\left(\begin{array}{ccc}0&3&-3\\-3&0&-2\\3&2&0\end{array}\right)\right]}

\mathsf{=\dfrac{1}{2}\left(\begin{array}{ccc}14+0&3+3&-7-3\\3-3&2+0&12-2\\-7+3&12+2&6+0\end{array}\right)}

\mathsf{=\dfrac{1}{2}\left(\begin{array}{ccc}14&6&-10\\0&2&10\\-4&14&6\end{array}\right)}

\mathsf{=\left(\begin{array}{ccc}7&3&-5\\0&1&5\\-2&7&3\end{array}\right)}

\mathsf{=A}

\mathsf{A=P+Q}

\implies\textsf{A is sum symmetric and skew symmetric matrices}

Similar questions