Math, asked by yawar3064, 8 months ago

Express a^3-1/a^3 - 3(a-1/a) as a perfect cube and find its value when a = 3

Answers

Answered by ashishks1912
6

GIVEN :

Express as a perfect cube and find its value when a = 3

TO FIND :

Express as a perfect cube and find its value when a = 3

SOLUTION :

Given expression is a^3-\frac{1}{a^3} - 3(a-\frac{1}{a})

a^3-\frac{1}{a^3} - 3(a-\frac{1}{a})

=(a-\frac{1}{a})(a^2+a(\frac{1}{a})+(\frac{1}{a})^2) - 3(a-\frac{1}{a})

By using the algebraic identity :

(a-b)^3=(a-b)(a^2+ab+b^2)

=(a-\frac{1}{a})(a^2+1+\frac{1}{a^2})- 3(a-\frac{1}{a})

=(a-\frac{1}{a})[a^2+1+\frac{1}{a^2} - 3]

=(a-\frac{1}{a})[a^2+\frac{1}{a^2} - 2]

=(a-\frac{1}{a})[a^2+\frac{1}{a^2} - 2(a)(\frac{1}{a})]

=(a-\frac{1}{a})[(a-\frac{1}{a})^2]

By using the algebraic identity :

(a-b)^2=a^2+b^2-2ab

By using the exponent property :

a^m.a^n=a^{m+n}

=(a-\frac{1}{a})^3

a^3-\frac{1}{a^3} - 3(a-\frac{1}{a})=(a-\frac{1}{a})^3

⇒ the given expression a^3-\frac{1}{a^3} - 3(a-\frac{1}{a}) is expressed as a perfect cube is  (a-\frac{1}{a})^3

Put a=3 in (a-\frac{1}{a})^3

=(3-\frac{1}{3})^3

=(\frac{9-1}{3})^3

=(\frac{8}{3})^3

By using the exponent property :

(\frac{a}{b})^m=\frac{a^m}{b^m}

=\frac{8^3}{3^3}

=\frac{512}{27}

⇒ The value of (a-\frac{1}{a})^3 when a=3 is \frac{512}{27}

Similar questions