Math, asked by fgggg2442, 1 year ago

Express all the trigonometric ratios in terms of cos a

Answers

Answered by Yugant1913
21

  \qquad \red{\large \sf \: sin \:A \:  =  \sqrt{1 -  {cos}^{2} \:  A} }

   \qquad\large \green {\sf \: tan \: A \:  =  \frac{sin \: A}{cos \: A} =  \frac{ \sqrt{1 - cos {}^{2} \: A } }{cos \:A }  } \\

 \:  \qquad \large  \pink{ \sf \: cosec \:A  \:  =  \frac{1}{sin \: A} =  \frac{1}{ \sqrt{1 -  {cos}^{2}  \:A } }  } \\

 \large \blue{ \sf \: cot \: A =  \frac{1}{tan \: A}  =  \frac{cos \: A}{1 -  {cos}^{2} \:  A} } \\

  \qquad\large \orange{ \sf \: sec \: A =  \frac{1}{cos \:A } }. \\

_____________________________________

More information

\purple{\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\bf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}

Similar questions