Express all the trigonometric ratios of an angle A in terms of TanA.
Answers
Answer:
We are aware of the combinations of trigonometric ratios by expressing one ration into other ratio, such that
\sin x=\frac{1}{\cosec x}sinx=
cosecx
1
\cos x=\frac{1}{\sec x}cosx=
secx
1
\tan x=\frac{1}{\cot x}tanx=
cotx
1
Trigonometric identities:
\sin x^{2}+\cos x^{2}=1sinx
2
+cosx
2
=1
\sec x^{2}-\tan x^{2}=1secx
2
−tanx
2
=1
\cosec x^{2}-\cot x^{2}=1cosecx
2
−cotx
2
=1
By using the above identities, we can represent one ratio into another format.
\sin x=\frac{1}{\cosec x}sinx=
cosecx
1
=\sqrt{\frac{1}{\cosec x^{2}}}=
cosecx
2
1
=\sqrt{\frac{1}{1+\cot x^{2}}}=
1+cotx
2
1
=\sqrt{\frac{\tan x^{2}}{1+\tan x^{2}}}=
1+tanx
2
tanx
2
\cos x=\frac{1}{\sec x}cosx=
secx
1
=\sqrt{\frac{1}{\sec x^{2}}}=
secx
2
1
=\sqrt{\left(\frac{1}{1+\tan x^{2}}\right)}=
(
1+tanx
2
1
)
\cosec x=\frac{1}{\sin x}cosecx=
sinx
1
By using above sine representation the value of \frac{1}{\sin x}
sinx
1
is
=\frac{1}{\sqrt{\left(\frac{\tan x^{2}}{1+\tan x^{2}}\right)}}=
(
1+tanx
2
tanx
2
)
1
c\sec x=\sqrt{\sec x^{2}}csecx=
secx
2
=\sqrt{1+\tan x^{2}}=
1+tanx
2
\cot x=\frac{1}{\tan x}cotx=
tanx
1